1
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
2
|
Xia J, Wang D, Guo W, Pei Y, Zhang L, Bao L, Li Y, Qu Y, Zhao Y, Hao C, Yao W. Exposure to micron-grade silica particles triggers pulmonary fibrosis through cell-to-cell delivery of exosomal miR-107. Int J Biol Macromol 2024; 266:131058. [PMID: 38522707 DOI: 10.1016/j.ijbiomac.2024.131058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Long-term exposure to inhalable silica particles may lead to severe systemic pulmonary disease, such as silicosis. Exosomes have been demonstrated to dominate the pathogenesis of silicosis, but the underlying mechanisms remain unclear. Therefore, this study aimed to explore the roles of exosomes by transmitting miR-107, which has been linked to the toxic pulmonary effects of silica particles. We found that miR-107, miR-122-5p, miR-125a-5p, miR-126-5p, and miR-335-5p were elevated in exosomes extracted from the serum of patients with silicosis. Notably, an increase in miR-107 in serum exosomes and lung tissue was observed in the experimental silicosis mouse model, while the inhibition of miR-107 reduced pulmonary fibrosis. Moreover, exosomes helped the migration of miR-107 from macrophages to lung fibroblasts, triggering the transdifferentiation of cell phenotypes. Further experiments demonstrated that miR-107 targets CDK6 and suppresses the expression of retinoblastoma protein phosphorylation and E2F1, resulting in cell-cycle arrest. Overall, micron-grade silica particles induced lung fibrosis through exosomal miR-107 negatively regulating the cell cycle signaling pathway. These findings may open a new avenue for understanding how silicosis is regulated by exosome-mediated cell-to-cell communication and suggest the prospect of exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Jiarui Xia
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Di Wang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Guo
- Department of Occupational Disease, Henan Institute for Occupational Medicine, Zhengzhou 450052, China
| | - Yangqing Pei
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Lei Bao
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiping Li
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqian Qu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Youliang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Changfu Hao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Wu Yao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Omais S, El Atie YE, Ghanem N. Rb deficiency, neuronal survival and neurodegeneration: In search of the perfect mouse model. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100074. [PMID: 36699152 PMCID: PMC9869410 DOI: 10.1016/j.crneur.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Yara E. El Atie
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
5
|
Muraoka T, Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem Res 2022; 47:2488-2498. [PMID: 35666393 PMCID: PMC9463329 DOI: 10.1007/s11064-022-03638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain. This review introduces the rational design of artificial extracellular matrix (ECM) mimics using supramolecular peptidic scaffolds, which self-assemble via non-covalent bonds and form hydrogels. The facile customizability of the peptide structures allows tuning the hydrogels' physical and biochemical properties, such as charge states, hydrophobicity, cell adhesiveness, stiffness, and stimuli responses. Supramolecular peptidic materials can create safer and more economical drugs than polymer materials and cell transplantation. We also discuss the importance of activating developmental programs for the recovery at the subacute phase of ischemic stroke. Self-assembling molecular medicine mimicking the ECMs and activating developmental programs may stand as a new drug modality of regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.
| | - Itsuki Ajioka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan. .,Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
6
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
7
|
Head SA, Hernandez-Alias X, Yang JS, Ciampi L, Beltran-Sastre V, Torres-Méndez A, Irimia M, Schaefer MH, Serrano L. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biol 2021; 19:e3001138. [PMID: 33621242 PMCID: PMC7935315 DOI: 10.1371/journal.pbio.3001138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/05/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3–27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues. However, microexons have been largely overlooked in prior analyses of splicing in cancer, as their small size necessitates specialized computational approaches for their detection. Here, we demonstrate that despite having low expression in normal nonneural tissues, SRRM4 is further silenced in tumors, resulting in the suppression of normal microexon inclusion. Remarkably, SRRM4 is the most consistently silenced SF across all tumor types analyzed, implying a general advantage of microexon down-regulation in cancer independent of its tissue of origin. We show that this silencing is favorable for tumor growth, as decreased SRRM4 expression in tumors is correlated with an increase in mitotic gene expression, and up-regulation of SRRM4 in cancer cell lines dose-dependently inhibits proliferation in vitro and in a mouse xenograft model. Further, this proliferation inhibition is accompanied by induction of neural-like expression and splicing patterns in cancer cells, suggesting that SRRM4 expression shifts the cell state away from proliferation and toward differentiation. We therefore conclude that SRRM4 acts as a proliferation brake, and tumors gain a selective advantage by cutting off this brake. Using data from The Cancer Genome Atlas, this study shows that the splicing factor SRRM4 and its program of differentiation-promoting microexons are downregulated across tumor types with remarkable consistency, providing tumors with a proliferative advantage.
Collapse
Affiliation(s)
- Sarah A. Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| | - Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Violeta Beltran-Sastre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Méndez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Martin H. Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- * E-mail: (SAH); (MHS); (LS)
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| |
Collapse
|
8
|
Ho NTT, Kutzner A, Heese K. A Novel Divergent Gene Transcription Paradigm-the Decisive, Brain-Specific, Neural |-Srgap2-Fam72a-| Master Gene Paradigm. Mol Neurobiol 2019; 56:5891-5899. [PMID: 30685845 DOI: 10.1007/s12035-019-1486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Brain development and repair largely depend on neural stem cells (NSCs). Here, we suggest that two genes, i.e., Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2) and Fam72a (family with sequence similarity to 72, member A), constitute a single, NSC-specific, |-Srgap2-Fam72a-| master gene pair co-existing in reciprocal functional dependency. This gene pair has a dual, commonly used, intergenic region (IGR) promotor, which is a prerequisite in controlling human brain plasticity. We applied fluorescence cellular microscopy and fluorescence-activated cell sorting (FACS) to assess rat |-Srgap2-Fam72a-| master gene IGR promotor activity upon stimulation with two contrary growth factors: nerve growth factor (Ngf, a differentiation growth factor) and epidermal growth factor (Egf, a mitotic growth factor). We found that Ngf and Egf acted on the same IGR gene promotor element of the |-Srgap2-Fam72a-| master gene to mediate cell differentiation and proliferation, respectively. Ngf mediated Srgap2 expression and neuronal survival and differentiation while Egf activated Fam72a transcription and cell proliferation. Our data provide new insights into the specific regulation of the |-Srgap2-Fam72a-| master gene with its dual IGR promotor that controls two reverse-oriented functional-dependent genes located on opposite DNA strands. This structure represents a novel paradigm for controlling transcription of divergent genes in regulating NSC gene expression. This paradigm may allow for novel therapeutic approaches to restore or improve higher cognitive functions and cure cancers.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
9
|
Barreau K, Montero-Menei C, Eyer J. The neurofilament derived-peptide NFL-TBS.40-63 enters in-vitro in human neural stem cells and increases their differentiation. PLoS One 2018; 13:e0201578. [PMID: 30092042 PMCID: PMC6084907 DOI: 10.1371/journal.pone.0201578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is a promising approach to treat neurodegenerative diseases by replacing degenerating cells like neurons or oligodendrocytes. Targeting human neural stem cells directly in the brain is a big challenge in such a strategy. The neurofilament derived NFL-TBS.40-63 peptide has recently been introduced as a novel tool to target neural stem cells. Previous studies showed that this peptide can be internalized by rat neural stem cells in vitro and in vivo, which coincided with lower proliferation and self-renewal capacity and increase of differentiation. In this study, we analyzed the uptake and potential effects of the NFL-TBS.40-63 peptide on human neural stem cells isolated from human fetuses. We showed that the peptide inhibits proliferation and the ability to produce neurospheres in vitro, which is consistent with an increase in cell adhesion and differentiation. These results confirm that the peptide could be a promising molecule to target and manipulate human neural stem cells and thus could serve as a strategic tool for regenerative medicine.
Collapse
Affiliation(s)
- Kristell Barreau
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
| | - Claudia Montero-Menei
- Centre de Recherche en Cancérologie et Immunologie, INSERM, Université de Nantes, Université Angers, Angers, France
| | - Joël Eyer
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
- * E-mail:
| |
Collapse
|
10
|
de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RDF, Corrêa-Velloso JDC, Ulrich H, Ventura ALM, Fragel-Madeira L. P2Y 12 but not P2Y 13 Purinergic Receptor Controls Postnatal Rat Retinogenesis In Vivo. Mol Neurobiol 2018; 55:8612-8624. [PMID: 29574630 DOI: 10.1007/s12035-018-1012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides through P2Y1 receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57KIP2, a cell cycle regulator. However, the role of Gi protein-coupled P2Y12 and P2Y13 receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y12 subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y13 were low. Immunohistochemistry assays performed with rat retina on P3 revealed P2Y12 receptor expression in both Ki-67-positive cells in the neuroblastic layer and Ki-67-negative cells in the ganglion cell layer and inner nuclear layer. Nonetheless, P2Y13 receptor expression could not be detected in any stratum of rat retina. Intravitreal injection of PSB 0739 or clopidogrel, both selective P2Y12 receptor antagonists, increased by 20 and 15%, respectively, the number of Ki-67-positive cells following 24 h of exposure. Moreover, the P2Y12 receptor inhibition increased cyclin D1 and decreased p57KIP2 expression. However, there were no changes in the S phase of the cell cycle (BrdU-positive cells) or in mitosis (phospho-histone-H3-positive cells). Interestingly, an increase in the number of cyclin D1/TUNEL-positive cells after treatment with PSB 0739 was observed. These data suggest that activation of P2Y12 receptors is required for the successful exit of RPCs from cell cycle in the postnatal rat retina.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
11
|
Orlowska A, Perera PT, Al Kobaisi M, Dias A, Nguyen HKD, Ghanaati S, Baulin V, Crawford RJ, Ivanova EP. The Effect of Coatings and Nerve Growth Factor on Attachment and Differentiation of Pheochromocytoma Cells. MATERIALS 2017; 11:ma11010060. [PMID: 29301234 PMCID: PMC5793558 DOI: 10.3390/ma11010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
Cellular attachment plays a vital role in the differentiation of pheochromocytoma (PC12) cells. PC12 cells are noradrenergic clonal cells isolated from the adrenal medulla of Rattus norvegicus and studied extensively as they have the ability to differentiate into sympathetic neuron-like cells. The effect of several experimental parameters including (i) the concentration of nerve growth factor (NGF); (ii) substratum coatings, such as poly-L-lysine (PLL), fibronectin (Fn), and laminin (Lam); and (iii) double coatings composed of PLL/Lam and PLL/Fn on the differentiation process of PC12 cells were studied. Cell morphology was visualised using brightfield phase contrast microscopy, cellular metabolism and proliferation were quantified using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, and the neurite outgrowth and axonal generation of the PC12 cells were evaluated using wide field fluorescence microscopy. It was found that double coatings of PLL/Lam and PLL/Fn supported robust adhesion and a two-fold enhanced neurite outgrowth of PC12 cells when treated with 100 ng/mL of NGF while exhibiting stable metabolic activity, leading to the accelerated generation of axons.
Collapse
Affiliation(s)
- Anna Orlowska
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Pallale Tharushi Perera
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Andre Dias
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Huu Khuong Duy Nguyen
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Vladimir Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avenue dels Paisos Catalans, 43007 Tarragona, Spain.
| | - Russell J Crawford
- School of Science, RMIT University, P.O. Box 2476, Melbourne VIC 3001, Australia.
| | - Elena P Ivanova
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia.
| |
Collapse
|
12
|
Oshikawa M, Okada K, Tabata H, Nagata KI, Ajioka I. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division. Development 2017; 144:3303-3314. [PMID: 28928282 DOI: 10.1242/dev.154013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kei Okada
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan .,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:736-744. [PMID: 27235712 DOI: 10.1016/j.phymed.2016.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-β secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-β receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.
Collapse
Affiliation(s)
- C R Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India..
| |
Collapse
|
14
|
Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 2016; 17:280-92. [PMID: 27033256 DOI: 10.1038/nrm.2016.27] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The roles of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression are well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important functions in other cellular processes, such as transcription, DNA damage repair, control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or CDKs, independently of their respective cell cycle partners, suggesting that there was a substantial divergence in the functions of these proteins during evolution.
Collapse
|
15
|
Ajioka I. Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regen Ther 2016; 3:63-67. [PMID: 31245474 PMCID: PMC6581816 DOI: 10.1016/j.reth.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8510, Japan. Fax: +81 3 5803 4716.
| |
Collapse
|
16
|
Jiang Y, Zhang L. Mechanism of all-transretinoic acid increasing retinoblastoma sensitivity to vincristine. ASIAN PAC J TROP MED 2016; 9:278-82. [PMID: 26972402 DOI: 10.1016/j.apjtm.2016.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore the mechanism of all-transretinoic acid (ATRA) increasing retinoblastoma (RB) sensitivity to vincristine, and the inhibiting effect of vincristine combined with ATRA treatment on the SO-RB50 cell proliferation. METHODS SO-RB50 cells were cultivated by routine culture method. Different concentrations of vincristine or ATRA were added into culture solution. After 48 h, cell counting kit-8 was used to detect the median inhibitory concentration (IC50) of vincristine combined with ATRT treatment to SO-RB50 cells. SO-RB50 cells were divided into drug combination group, vincristine group, ATRA group and control group. Different drugs were added into the culture solution respectively for cell culture based on the IC50 value. Cell counting kit-8 was used to detect the cell proliferation every 24-h cultivation. After continuous determination for 6 d, data was processed to draw the cell growth curve. After drug use for 72 h, flow cytometry was used to detect the proportion of different cell cycles of SO-RB50 cells in each group. After drug use for 48 h, annexin V/propidium iodide method was used to detect the SO-RB50 cell apoptosis in each group. RESULTS The IC50 value of vincristine treatment on the SO-RB50 cells was 0.11 μmol/L, and ATRT was 12.84 μmol/L. The cell growth curve in control group rose gradually along with the extended culture time, but after vincristine and ATRA treatment, the cell growth curve was smooth and steady. The cell increment was the least in drug combination group and its cell growth curve was the smoothest. There was significant difference in A450 48 h and 72 h after treatment (Fgrouping = 77.316, P < 0.001; Ftime = 86.985, P < 0.001). Compared with control group, A450 value in drug combination group, vincristine group, ATRA group was significant lower (P < 0.001). Compared with control group, the G2/M phase cell proportion in vincristine group was significantly increased, while the G0/G1 phase cell proportion was significantly decreased; the G0/G1 phase cell proportion in ATRA group was significantly increased, while the S phase cell proportion was significantly decreased (FG0/G1 = 85.878, Fs = 56.455, FG2/M = 85.878, P < 0.001). After 48 h, there was significant difference in SO-RB50 cell apoptosis rate among groups (F = 11.312, P < 0.05). The apoptosis rate in drug combination group was significantly higher than that of other groups (P < 0.001). CONCLUSIONS ATRA can increase the sensitivity of SO-RB50 cells to vincristine. Vincristine combined with ATRA treatment can significantly increase the inhibiting effect on SO-RB50 cells, which may be related with promoting cell apoptosis and involving in cell cycle control.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Zhang
- Department of Ophthalmology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
17
|
How to make neurons--thoughts on the molecular logic of neurogenesis in the central nervous system. Cell Tissue Res 2014; 359:5-16. [PMID: 25416507 DOI: 10.1007/s00441-014-2048-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022]
Abstract
Neuronal differentiation relies on a set of interconnected molecular events to achieve the differentiation of pan-neuronal hallmarks, together with neuronal subtype-specific features. Here, we propose a conceptual framework for these events, based on recent findings. This framework encompasses a dimension in time during development, progressing from early master regulators to later expressed effector genes and terminal selector genes. As a horizontal intersection, we propose the action of permissive fate determinants that are critical in allowing progression through the above transcriptional phases. Typically, these are widely expressed and often interact with the chromatin remodeling machinery. We conclude by discussing this model in the context of the direct fate conversion of various somatic cells into neurons.
Collapse
|