Dai H, Li L, Zeng T, Chen L. Cell-specific network constructed by single-cell RNA sequencing data.
Nucleic Acids Res 2019;
47:e62. [PMID:
30864667 PMCID:
PMC6582408 DOI:
10.1093/nar/gkz172]
[Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/14/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is able to give an insight into the gene-gene associations or transcriptional networks among cell populations based on the sequencing of a large number of cells. However, traditional network methods are limited to the grouped cells instead of each single cell, and thus the heterogeneity of single cells will be erased. We present a new method to construct a cell-specific network (CSN) for each single cell from scRNA-seq data (i.e. one network for one cell), which transforms the data from 'unstable' gene expression form to 'stable' gene association form on a single-cell basis. In particular, it is for the first time that we can identify the gene associations/network at a single-cell resolution level. By CSN method, scRNA-seq data can be analyzed for clustering and pseudo-trajectory from network perspective by any existing method, which opens a new way to scRNA-seq data analyses. In addition, CSN is able to find differential gene associations for each single cell, and even 'dark' genes that play important roles at the network level but are generally ignored by traditional differential gene expression analyses. In addition, CSN can be applied to construct individual network of each sample bulk RNA-seq data. Experiments on various scRNA-seq datasets validated the effectiveness of CSN in terms of accuracy and robustness.
Collapse