1
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
3
|
López-González L, Alonso A, García-Calero E, de Puelles E, Puelles L. Tangential Intrahypothalamic Migration of the Mouse Ventral Premamillary Nucleus and Fgf8 Signaling. Front Cell Dev Biol 2021; 9:676121. [PMID: 34095148 PMCID: PMC8170039 DOI: 10.3389/fcell.2021.676121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The tuberal hypothalamic ventral premamillary nucleus (VPM) described in mammals links olfactory and metabolic cues with mating behavior and is involved in the onset of puberty. We offer here descriptive and experimental evidence on a migratory phase in the development of this structure in mice at E12.5–E13.5. Its cells originate at the retromamillary area (RM) and then migrate tangentially rostralward, eschewing the mamillary body, and crossing the molecularly distinct perimamillary band, until they reach a definitive relatively superficial ventral tuberal location. Corroborating recent transcriptomic studies reporting a variety of adult glutamatergic cell types in the VPM, and different projections in the adult, we found that part of this population heterogeneity emerges already early in development, during tangential migration, in the form of differential gene expression properties of at least 2–3 mixed populations possibly derived from subtly different parts of the RM. These partly distribute differentially in the core and shell parts of the final VPM. Since there is a neighboring acroterminal source of Fgf8, and Fgfr2 is expressed at the early RM, we evaluated a possible influence of Fgf8 signal on VPM development using hypomorphic Fgf8neo/null embryos. These results suggested a trophic role of Fgf8 on RM and all cells migrating tangentially out of this area (VPM and the subthalamic nucleus), leading in hypomorphs to reduced cellularity after E15.5 without alteration of the migrations proper.
Collapse
Affiliation(s)
- Lara López-González
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Elena García-Calero
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Eduardo de Puelles
- Instituto de Neurociencias de Alicante, CSIC, Universidad Miguel Hernández, Alicante, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
4
|
Jones WD, Guadiana SM, Grove EA. A model of neocortical area patterning in the lissencephalic mouse may hold for larger gyrencephalic brains. J Comp Neurol 2019; 527:1461-1477. [PMID: 30689213 DOI: 10.1002/cne.24643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
In the mouse, two telencephalic signaling centers orchestrate embryonic patterning of the cerebral cortex. From the rostral patterning center in the telencephalon, the Fibroblast Growth Factor, FGF8, disperses as a morphogen to establish the rostral to caudal axis of the neocortical area map. FGF8 coordinates with Wnt3a from the cortical hem to regulate graded expression of transcription factors that position neocortical areas, and control hippocampal development. Whether similar signaling centers pattern the much larger cortices of carnivore and primate species, however, is unclear. The limited dispersion range of FGF8 and Wnt3a is inconsistent with patterning larger cortical primordia. Yet the implication that different mechanisms organize cortex in different mammals flies in the face of the tenet that developmental patterning mechanisms are conserved across vertebrate species. In the present study, both signaling centers were identified in the ferret telencephalon, as were expression gradients of the patterning transcription factor genes regulated by FGF8 and Wnt3a. Notably, at the stage corresponding to the peak period of FGF8 signaling in the mouse neocortical primordium (NP), the NP was the same size in ferret and mouse, which would allow morphogen patterning of the ferret NP. Subsequently, the size of ferret neocortex shot past that of the mouse. Images from online databases further suggest that NP growth in humans, too, is slowed in early cortical development. We propose that if early growth in larger brains is held back, mechanisms that pattern the neocortical area map in the mouse could be conserved across mammalian species.
Collapse
Affiliation(s)
- William D Jones
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Sarah M Guadiana
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois.,Committee on Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|