1
|
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, Sestini G, Rivron N, Leeb M. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. Nat Commun 2024; 15:7879. [PMID: 39251582 PMCID: PMC11384738 DOI: 10.1038/s41467-024-51794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Saskia Kowald
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Luis Miguel Cerron-Alvan
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Anna Philina Fabing
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Giovanni Sestini
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Chen R, Fan R, Chen F, Govindasamy N, Brinkmann H, Stehling M, Adams RH, Jeong HW, Bedzhov I. Analyzing embryo dormancy at single-cell resolution reveals dynamic transcriptional responses and activation of integrin-Yap/Taz prosurvival signaling. Cell Stem Cell 2024; 31:1262-1279.e8. [PMID: 39047740 DOI: 10.1016/j.stem.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Embryonic diapause is a reproductive adaptation that enables some mammalian species to halt the otherwise continuous pace of embryonic development. In this dormant state, the embryo exploits poorly understood regulatory mechanisms to preserve its developmental potential for prolonged periods of time. Here, using mouse embryos and single-cell RNA sequencing, we molecularly defined embryonic diapause at single-cell resolution, revealing transcriptional dynamics while the embryo seemingly resides in a state of suspended animation. Additionally, we found that the dormant pluripotent cells rely on integrin receptors to sense their microenvironment and preserve their viability via Yap/Taz-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Fei Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Single Cell Multi-Omics Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
3
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
4
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Lando D, Ma X, Cao Y, Jartseva A, Stevens TJ, Boucher W, Reynolds N, Montibus B, Hall D, Lackner A, Ragheb R, Leeb M, Hendrich BD, Laue ED. Enhancer-promoter interactions are reconfigured through the formation of long-range multiway hubs as mouse ES cells exit pluripotency. Mol Cell 2024; 84:1406-1421.e8. [PMID: 38490199 PMCID: PMC7616059 DOI: 10.1016/j.molcel.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.
Collapse
Affiliation(s)
- David Lando
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yang Cao
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicola Reynolds
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Bertille Montibus
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Dominic Hall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ramy Ragheb
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Brian D Hendrich
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
6
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Liu Y, Li X, Ma X, Du Q, Wang J, Yu H. MiR-290 Family Maintains Pluripotency and Self-Renewal by Regulating MAPK Signaling Pathway in Intermediate Pluripotent Stem Cells. Int J Mol Sci 2024; 25:2681. [PMID: 38473927 DOI: 10.3390/ijms25052681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/14/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiaozhuang Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Qiankun Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
8
|
Zhao H, Li D, Xiao X, Liu C, Chen G, Su X, Yan Z, Gu S, Wang Y, Li G, Feng J, Li W, Chen P, Yang J, Li Q. Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience 2024; 27:108537. [PMID: 38213626 PMCID: PMC10783625 DOI: 10.1016/j.isci.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyu Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenxin Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shijia Gu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Teague S, Yao L, Heemskerk I. The many dimensions of germline competence. Curr Opin Cell Biol 2023; 85:102259. [PMID: 37852152 PMCID: PMC11123554 DOI: 10.1016/j.ceb.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023]
Abstract
Primordial germ cell (PGC) specification is the first step in the development of the germline. Recent work has elucidated human-mouse differences in PGC differentiation and identified cell states with enhanced competency for PGC-like cell (PGCLC) differentiation in vitro in both species. However, it remains a subject of debate how different PGC competent states in vitro relate to each other, to embryonic development, and to the origin of PGCs in vivo. Here we review recent literature on human PGCLC differentiation in the context of mouse and non-human primate models. In contrast to what was previously thought, recent work suggests human pluripotent stem cells (hPSCs) are highly germline competent. We argue that paradoxical observations regarding the origin and signaling requirements of hPGCLCs may be due to local cell interactions. These confound assays of competence by generating endogenous signaling gradients and spatially modulating the ability to receive exogenous inductive signals. Furthermore, combinatorial signaling suggests that there is no unique germline competent state: rather than a one-dimensional spectrum of developmental progression, competence should be considered in a higher dimensional landscape of cell states.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
11
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
12
|
Abel A, Sozen B. Shifting early embryology paradigms: Applications of stem cell-based embryo models in bioengineering. Curr Opin Genet Dev 2023; 81:102069. [PMID: 37392541 PMCID: PMC10530566 DOI: 10.1016/j.gde.2023.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Technologies to reproduce specific aspects of early mammalian embryogenesis in vitro using stem cells have skyrocketed over the last several years. With these advances, we have gained new perspectives on how embryonic and extraembryonic cells self-organize to form the embryo. These reductionist approaches hold promise for the future implementation of precise environmental and genetic controls to understand variables affecting embryo development. Our review discusses recent progress in cellular models of early mammalian embryo development and bioengineering advancements that can be leveraged to study the embryo-maternal interface. We summarize current gaps in the field, emphasizing the importance of understanding how intercellular interactions at this interface contribute to reproductive and developmental health.
Collapse
Affiliation(s)
- Ashley Abel
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA. https://twitter.com/@caitrionacunn
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
14
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
15
|
Takeda Y, Matsuguchi S, Nozaki S, Mihara T, Abe J, Hirai Y. Suppression of P-cadherin expression as a key regulatory element for embryonic stem cell stemness. Cell Struct Funct 2023; 48:49-57. [PMID: 36575041 PMCID: PMC10721948 DOI: 10.1247/csf.22060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In embryonic stem (ES) cell colonies, a small subpopulation that changes cell shape and loses pluripotency often appears in two-dimensional (2D) cultures, even in the presence of a stemness factor. We have previously shown that membrane translocation of the syntaxin4, t-SNARE protein contributes to this phenomenon. Here, we show that ES cells in three-dimensional (3D) aggregates do not succumb to extruded syntaxin4 owing to suppressed expression of P-cadherin protein. While extracellular expression of syntaxin4 led to the striking upregulation of P-cadherin mRNA in both 2D and 3D-ES cells, morphological changes and appreciable expression of P-cadherin protein were detected only in 2D-ES cells. Importantly, the introduction of an expression cassette for P-cadherin practically reproduced the effects induced by extracellular syntaxin4, where the transgene product was clearly detected in 2D-, but not 3D-ES cells. An expression construct for P-cadherin-Venus harboring an in-frame insertion of the P2A sequence at the joint region gave fluorescent signals only in the cytoplasm of 2D-ES cells, demonstrating translational regulation of P-cadherin. These results provide the mechanistic insight into the uncontrollable differentiation in 2D-ES cells and shed light on the validity of the "embryoid body protocol commonly used for ES cell handling" for directional differentiation.Key words: differentiation, embryoid body, ES cells, P-cadherin, syntaxin4.
Collapse
Affiliation(s)
- Yuka Takeda
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| | - Shuji Matsuguchi
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| | - Sae Nozaki
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| | - Taisei Mihara
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Japan
| |
Collapse
|
16
|
Hamed MM, Taniguchi K, Duncan MC. Monitoring Effects of Membrane Traffic Via Changes in Cell Polarity and Morphogenesis in Three-Dimensional Human Pluripotent Stem Cell Cysts. Methods Mol Biol 2023; 2557:83-98. [PMID: 36512211 PMCID: PMC10276343 DOI: 10.1007/978-1-0716-2639-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane traffic at the Golgi and endosomes plays many critical roles in the polarization and the morphogenesis of epithelial tissues. Studies into the roles of traffic in morphogenesis in mammals are often complicated by early embryonic lethality of mutations in membrane traffic as well as the inherent difficulty in imaging developing embryos posed by their size and location. Increasingly, human pluripotent stem cell (hPSC)-derived embryo- and organ-like systems (e.g., embryoids, organoids) provide a useful platform to illuminate the requirements of traffic in human embryonic tissue morphogenesis because these in vitro models are highly amenable to fluorescence microscopy and provide the ability to examine the role of essential genes not possible with animal studies. Here, we present a method to generate hPSC-cysts, a 3-D hPSC-based model of human epiblast lumen formation. This system provides unique opportunities to examine the role of membrane traffic during epithelial morphogenesis. We also present methods to process hPSC-cysts for immunofluorescence and staining with commonly used fluorescence labels useful for detecting defects in polarization and morphogenesis caused by defects in membrane traffic.
Collapse
Affiliation(s)
- Maha M Hamed
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
18
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
19
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
20
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
21
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
22
|
Dierolf JG, Hunter HLM, Watson AJ, Betts DH. Modulation of PKM1/2 levels by steric blocking morpholinos alters the metabolic and pluripotent state of murine pluripotent stem cells. Stem Cells Dev 2022; 31:278-295. [PMID: 35469439 DOI: 10.1089/scd.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular metabolism plays both an active and passive role in embryonic development, pluripotency, and cell-fate decisions. However, little is known regarding the role of metabolism in regulating the recently described "formative" pluripotent state. The pluripotent developmental continuum features a metabolic switch from a bivalent metabolism (both glycolysis and oxidative phosphorylation) in naïve cells, to predominantly glycolysis in primed cells. We investigated the role of pyruvate kinase muscle isoforms (PKM1/2) in naïve, formative, and primed mouse embryonic stem cells through modulation of PKM1/2 mRNA transcripts using steric blocking morpholinos that downregulate PKM2 and upregulate PKM1. We have examined these effects in naïve, formative, and primed cells by quantifying the effects of PKM1/2 modulation on pluripotent and metabolic transcripts and by measuring shifts in the population frequencies of cells expressing naïve and primed cell surface markers by flow cytometry. Our results demonstrate that modulating PKM1 and PKM2 levels alters the transition from the naïve state into a primed pluripotent state by enhancing the proportion of the affected cells seen in the "formative" state. Therefore, we conclude that PKM1/2 actively contributes to mechanisms that oversee early stem pluripotency and their progression towards a primed pluripotent state.
Collapse
Affiliation(s)
- Joshua George Dierolf
- University of Western Ontario Schulich School of Medicine and Dentistry, 70384, Physiology and Pharmacology, London, Ontario, Canada;
| | - Hailey L M Hunter
- University of Western Ontario Schulich School of Medicine and Dentistry, 70384, Physiology and Pharmacology, London, Ontario, Canada;
| | - Andrew John Watson
- University of Western Ontario Schulich School of Medicine and Dentistry, 70384, Physiology and Pharmacology, London, Ontario, Canada;
| | - Dean Harvey Betts
- University of Western Ontario Schulich School of Medicine and Dentistry, 70384, Physiology and Pharmacology, London, Ontario, Canada;
| |
Collapse
|
23
|
Rushton MD, Saunderson EA, Patani H, Green MR, Ficz G. An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics 2022; 17:1590-1607. [PMID: 35324392 DOI: 10.1080/15592294.2022.2044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Propagation of DNA methylation through cell division relies on the recognition of methylated cytosines by UHRF1. In reprogramming of mouse embryonic stem cells to naive pluripotency (also known as ground state), despite high levels of Uhrf1 transcript, the protein is targeted for degradation by the proteasome, leading to DNA methylation loss. We have undertaken an shRNA screen to identify the signalling pathways that converge upon UHRF1 and control its degradation, using UHRF1-GFP fluorescence as readout. Many candidates we identified are key enzymes in regulation of glucose metabolism, nucleotide metabolism and Pi3K/AKT/mTOR pathway. Unexpectedly, while downregulation of all candidates we selected for validation rescued UHRF1 protein levels, we found that in some of the cases this was not sufficient to maintain DNA methylation. This has implications for development, ageing and diseased conditions. Our study demonstrates two separate processes that regulate UHRF1 protein abundance and activity.
Collapse
Affiliation(s)
- Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Horizon Discovery, Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Research And Development, CS Genetics Ltd, Cambridge, UK
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Labouesse C, Tan BX, Agley CC, Hofer M, Winkel AK, Stirparo GG, Stuart HT, Verstreken CM, Mulas C, Mansfield W, Bertone P, Franze K, Silva JCR, Chalut KJ. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun 2021; 12:6132. [PMID: 34675200 PMCID: PMC8531294 DOI: 10.1038/s41467-021-26236-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.
Collapse
Affiliation(s)
- Céline Labouesse
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Bao Xiu Tan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chibeza C Agley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Moritz Hofer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christophe M Verstreken
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul Bertone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Medicine, Alpert Medical School, Brown University, Providence, IR, USA
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Center for Cell Lineage and Atlas, Guangzhou Laboratory, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong Province, China.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
25
|
Abstract
A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Agathe Chaigne
- MRC, LMCB, University College London, Gower Street, London WC1E 6BT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Kevin J Chalut
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
26
|
Hawdon A, Aberkane A, Zenker J. Microtubule-dependent subcellular organisation of pluripotent cells. Development 2021; 148:272646. [PMID: 34710215 DOI: 10.1242/dev.199909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With the advancement of cutting-edge live imaging technologies, microtubule remodelling has evolved as an integral regulator for the establishment of distinct differentiated cells. However, despite their fundamental role in cell structure and function, microtubules have received less attention when unravelling the regulatory circuitry of pluripotency. Here, we summarise the role of microtubule organisation and microtubule-dependent events required for the formation of pluripotent cells in vivo by deciphering the process of early embryogenesis: from fertilisation to blastocyst. Furthermore, we highlight current advances in elucidating the significance of specific microtubule arrays in in vitro culture systems of pluripotent stem cells and how the microtubule cytoskeleton serves as a highway for the precise intracellular movement of organelles. This Review provides an informed understanding of the intrinsic role of subcellular architecture of pluripotent cells and accentuates their regenerative potential in combination with innovative light-inducible microtubule techniques.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Asma Aberkane
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
27
|
Vojtek M, Chambers I. Loss of Resf1 reduces the efficiency of embryonic stem cell self-renewal and germline entry. Life Sci Alliance 2021; 4:4/12/e202101190. [PMID: 34607919 PMCID: PMC8500223 DOI: 10.26508/lsa.202101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
RESF1 supports ESC self-renewal by raising expression of transmembrane LIF receptor and key pluripotency transcription factors and increases in vitro primordial germ cell differentiation efficiency. Retroelement silencing factor 1 (RESF1) interacts with the key regulators of mouse embryonic stem cells (ESCs) OCT4 and NANOG, and its absence results in sterility of mice. However, the function of RESF1 in ESCs and germline specification is poorly understood. In this study, we used Resf1 knockout cell lines to determine the requirements of RESF1 for ESC self-renewal and for in vitro specification of ESCs into primordial germ cell-like cells (PGCLCs). We found that deletion of Resf1 in ESCs cultured in serum and LIF reduces self-renewal potential, whereas episomal expression of RESF1 has a modest positive effect on ESC self-renewal. In addition, RESF1 is not required for the capacity of NANOG and its downstream target ESRRB to drive self-renewal in the absence of LIF. However, Resf1 deletion reduces the efficiency of PGCLC differentiation in vitro. These results identify Resf1 as a novel player in the regulation of pluripotent stem cells and germ cell specification.
Collapse
Affiliation(s)
- Matúš Vojtek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland .,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
28
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
29
|
Yu H, Wang J, Lackford B, Bennett B, Li JL, Hu G. INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Res 2021; 49:6739-6755. [PMID: 34139016 DOI: 10.1093/nar/gkab476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.
Collapse
Affiliation(s)
- Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
Dehghani H. Regulation of Chromatin Organization in Cell Stemness: The Emerging Role of Long Non-coding RNAs. Stem Cell Rev Rep 2021; 17:2042-2053. [PMID: 34181184 DOI: 10.1007/s12015-021-10209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Chromatin is organized as chromosome territories in the nucleus of an interphase cell. The cell-type- and cell-state-specific organization of chromatin including the location, volume, compaction level, and spatial arrangement of chromosome territories are the major determinants of genome function. In addition, in response to different signaling stimuli and regulatory cues, it is the dynamic adaptation of chromatin structure that establishes and organizes transcriptional programs. It is known that varying levels of stemness are defined by gene regulatory networks. Accordingly, chromatin is the main milieu to host the transcriptional programs and gene regulatory networks responsible for the stemness status of a cell. In this review, our current understanding of the spatial organization of chromatin and the ways by which it defines stemness are discussed. In particular, the role of lncRNAs that regulate and affect chromatin organization and stemness properties are delineated. These roles can be categorized into the topics of specific binding to and epigenetic regulation of the promoter of pluripotency genes, their interaction with transcription factors, coordinating the intra- and inter-chromosomal looping of pluripotency-related genes, and their RNA-independent functions. This review brings together the results of studies that have begun to clarify the emerging roles of lncRNAs in the regulation of chromatin organization adapted for stemness and cancer plasticity.
Collapse
Affiliation(s)
- Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
31
|
Dierolf JG, Watson AJ, Betts DH. Differential localization patterns of pyruvate kinase isoforms in murine naïve, formative, and primed pluripotent states. Exp Cell Res 2021; 405:112714. [PMID: 34181938 DOI: 10.1016/j.yexcr.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada.
| |
Collapse
|
32
|
Adams E, McCloy R, Jordan A, Falconer K, Dykes IM. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis 2021; 8:72. [PMID: 34206355 PMCID: PMC8306371 DOI: 10.3390/jcdd8070072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a leading cause of mortality and morbidity. Those that survive acute myocardial infarction are at significant risk of subsequent heart failure due to fibrotic remodelling of the infarcted myocardium. By applying knowledge from the study of embryonic cardiovascular development, modern medicine offers hope for treatment of this condition through regeneration of the myocardium by direct reprogramming of fibrotic scar tissue. Here, we will review mechanisms of cell fate specification leading to the generation of cardiovascular cell types in the embryo and use this as a framework in which to understand direct reprogramming. Driving expression of a network of transcription factors, micro RNA or small molecule epigenetic modifiers can reverse epigenetic silencing, reverting differentiated cells to a state of induced pluripotency. The pluripotent state can be bypassed by direct reprogramming in which one differentiated cell type can be transdifferentiated into another. Transdifferentiating cardiac fibroblasts to cardiomyocytes requires a network of transcription factors similar to that observed in embryonic multipotent cardiac progenitors. There is some flexibility in the composition of this network. These studies raise the possibility that the failing heart could one day be regenerated by directly reprogramming cardiac fibroblasts within post-infarct scar tissue.
Collapse
Affiliation(s)
- Emma Adams
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Rachel McCloy
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Ashley Jordan
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Kaitlin Falconer
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Iain M. Dykes
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
33
|
In Vitro Culture of Mouse Blastocysts to the Egg Cylinder Stage via Mural Trophectoderm Excision. Methods Mol Biol 2021. [PMID: 32944901 DOI: 10.1007/978-1-0716-0958-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The developmental transition from the blastocyst to the egg cylinder stage is associated with stark changes in the overall shape of the embryo, as well as with reorganization of the transcriptional network and epigenetic landscape in the pluripotent and the supportive extraembryonic lineages. To directly analyze this pre- to postimplantation switch, culture conditions are needed that can support mouse embryogenesis beyond the blastocyst stage without maternal input. Here we provide a step-by-step protocol describing an experimental pipeline for isolating late blastocysts, excising (manually or via laser assistance) the mural trophectoderm, and, finally, culturing the embryo to the egg cylinder stage.
Collapse
|
34
|
Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021; 28:453-471.e8. [PMID: 33271069 PMCID: PMC7939546 DOI: 10.1016/j.stem.2020.11.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yingzhi Cui
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
35
|
Kim YS, Fan R, Kremer L, Kuempel-Rink N, Mildner K, Zeuschner D, Hekking L, Stehling M, Bedzhov I. Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning. SCIENCE ADVANCES 2021; 7:7/11/eabe1640. [PMID: 33692105 PMCID: PMC7946377 DOI: 10.1126/sciadv.abe1640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure. Through investigating the cavity formation, we found that in the epiblast, the process of lumenogenesis is driven by reorganization of intercellular adhesion, vectoral fluid transport, and mitotic paracellular water influx from the blastocoel into the emerging proamniotic cavity. By experimentally blocking lumenogenesis, we found that the proamniotic cavity functions as a hub for communication between the early lineages, enabling proper growth and patterning of the postimplantation embryo.
Collapse
Affiliation(s)
- Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ludmila Kremer
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Nannette Kuempel-Rink
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Liesbeth Hekking
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
36
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|
37
|
Kim N. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod Med Biol 2021; 20:20-26. [PMID: 33488280 PMCID: PMC7812493 DOI: 10.1002/rmb2.12346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
RATIONALE The study of somatic cell reprogramming and cell differentiation is essential for the application of recent techniques in regenerative medicine. It is, specifically, necessary to determine the appropriate conditions required for the induction of reprogramming and cell differentiation. METHODS Based on a comprehensive literature review, the effects of pH fluctuation on alternative splicing, mitochondria, plasma membrane, and phase separation, in several cell types are discussed. Additionally, the associated molecular pathways important for the induction of differentiation and reprogramming are reviewed. RESULTS While cells change their state, several factors such as cytokines and physical parameters affect cellular reprogramming and differentiation. As the extracellular and intracellular pH affects biophysical phenomena in a cell, the effects of pH fluctuation can ultimately decide the cell fate through molecular pathways. Though few studies have reported on the direct effects of culture pH on cell state, there is substantial information on the pathways related to stem cell differentiation and somatic cell reprogramming that can be stimulated by environmental pH. CONCLUSION Environmental pH fluctuations may decide cell fate through the molecular pathways associated with somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Narae Kim
- Nucleic Acid Chemistry and EngineeringOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
38
|
Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Dev Cell 2020; 56:277-291.e6. [PMID: 33321103 DOI: 10.1016/j.devcel.2020.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
It is critical that epiblast cells within blastocyst-stage embryos receive the necessary regulatory cues to remain pluripotent until the appropriate time when they are stimulated to undergo differentiation, ultimately to give rise to an entire organism. Here, we show that exposure of embryonic stem cells (ESCs), which are the in vitro equivalents of epiblasts, to ESC-derived extracellular vesicles (EVs) helps to maintain their stem cell properties even under culture conditions that would otherwise induce differentiation. EV-treated ESCs continued to express stemness genes, preserving their pluripotency and ability to generate chimeric mice. These effects were triggered by fibronectin bound to the surfaces of EVs, enabling them to interact with ESC-associated integrins and activate FAK more effectively than fibronectin alone. Overall, these findings highlight a potential regulatory mechanism whereby epiblast cells, via their shed EVs, create an environment within the blastocyst that prevents their premature differentiation and maintains their pluripotent state.
Collapse
|
39
|
Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nat Commun 2020; 11:5499. [PMID: 33127892 PMCID: PMC7603494 DOI: 10.1038/s41467-020-19353-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/β-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/β-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause. During this phase, the progressive changes in the epiblast architecture and Wnt signalling response show that diapause is not a stasis but instead is a dynamic process with underlying mechanisms that can appear redundant during transient embryogenesis. Embryonic diapause is a state of dormancy with poorly understood mechanisms of embryo intrinsic regulation. Here, the authors show that murine diapause is a dynamic process, where tissue-scale reorganization of the pluripotent lineage is controlled in an autocrine manner by the Wnt/b-catenin/Esrrb signalling cascade.
Collapse
|
40
|
The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. Int J Mol Sci 2020; 21:ijms21176285. [PMID: 32877989 PMCID: PMC7504502 DOI: 10.3390/ijms21176285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Naïve pluripotent embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent distinctive developmental stages, mimicking the pre- and the post-implantation events during the embryo development, respectively. The complex molecular mechanisms governing the transition from ESCs into EpiSCs are orchestrated by fluctuating levels of pluripotency transcription factors (Nanog, Oct4, etc.) and wide-ranging remodeling of the epigenetic landscape. Recent studies highlighted the pivotal role of microRNAs (miRNAs) in balancing the switch from self-renewal to differentiation of ESCs. Of note, evidence deriving from miRNA-based reprogramming strategies underscores the role of the non-coding RNAs in the induction and maintenance of the stemness properties. In this review, we revised recent studies concerning the functions mediated by miRNAs in ESCs, with the aim of giving a comprehensive view of the highly dynamic miRNA-mediated tuning, essential to guarantee cell cycle progression, pluripotency maintenance and the proper commitment of ESCs.
Collapse
|
41
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res 2020; 389:111882. [DOI: 10.1016/j.yexcr.2020.111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
42
|
Verstreken CM, Labouesse C, Agley CC, Chalut KJ. Embryonic stem cells become mechanoresponsive upon exit from ground state of pluripotency. Open Biol 2020; 9:180203. [PMID: 30958114 PMCID: PMC6367133 DOI: 10.1098/rsob.180203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stem cell fate decisions are driven by a broad array of signals, both chemical and mechanical. Although much progress has been made in our understanding of the impact of chemical signals on cell fate choice, much less is known about the role and influence of mechanical signalling, particularly in embryonic stem (ES) cells. Many studies use substrates with different stiffness to study mechanical signalling, but changing substrate stiffness can induce secondary effects which are difficult to disentangle from the direct effects of forces/mechanical signals. To probe the direct impact of mechanical stress on cells, we developed an adaptable cell substrate stretcher to exert specific, reproducible forces on cells. Using this device to test the response of ES cells to tensile strain, we found that cells experienced a transient influx of calcium followed by an upregulation of the so-called immediate and early genes. On longer time scales, however, ES cells in ground state conditions were largely insensitive to mechanical stress. Nonetheless, as ES cells exited the ground state, their susceptibility to mechanical signals increased, resulting in broad transcriptional changes. Our findings suggest that exit from ground state of pluripotency is unaffected by mechanical signals, but that these signals could become important during the next stage of lineage specification. A better understanding of this process could improve our understanding of cell fate choice in early development and improve protocols for differentiation guided by mechanical cues.
Collapse
Affiliation(s)
- C M Verstreken
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C Labouesse
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C C Agley
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - K J Chalut
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| |
Collapse
|
43
|
Kim HJ, Osteil P, Humphrey SJ, Cinghu S, Oldfield AJ, Patrick E, Wilkie EE, Peng G, Suo S, Jothi R, Tam PPL, Yang P. Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Res 2020; 48:1828-1842. [PMID: 31853542 PMCID: PMC7038952 DOI: 10.1093/nar/gkz1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved ‘trans-omic’ datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Pierre Osteil
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Ellis Patrick
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Shengbao Suo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Patrick P L Tam
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
45
|
Hamidi S, Nakaya Y, Nagai H, Alev C, Kasukawa T, Chhabra S, Lee R, Niwa H, Warmflash A, Shibata T, Sheng G. Mesenchymal-epithelial transition regulates initiation of pluripotency exit before gastrulation. Development 2020; 147:147/3/dev184960. [PMID: 32014865 DOI: 10.1242/dev.184960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
The pluripotent epiblast gives rise to all tissues and organs in the adult body. Its differentiation starts at gastrulation, when the epiblast generates mesoderm and endoderm germ layers through epithelial-mesenchymal transition (EMT). Although gastrulation EMT coincides with loss of epiblast pluripotency, pluripotent cells in development and in vitro can adopt either mesenchymal or epithelial morphology. The relationship between epiblast cellular morphology and its pluripotency is not well understood. Here, using chicken epiblast and mammalian pluripotency stem cell (PSC) models, we show that PSCs undergo a mesenchymal-epithelial transition (MET) prior to EMT-associated pluripotency loss. Epiblast MET and its subsequent EMT are two distinct processes. The former, a partial MET, is associated with reversible initiation of pluripotency exit, whereas the latter, a full EMT, is associated with complete and irreversible pluripotency loss. We provide evidence that integrin-mediated cell-matrix interaction is a key player in pluripotency exit regulation. We propose that epiblast partial MET is an evolutionarily conserved process among all amniotic vertebrates and that epiblast pluripotency is restricted to an intermediate cellular state residing between the fully mesenchymal and fully epithelial states.
Collapse
Affiliation(s)
- Sofiane Hamidi
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukiko Nakaya
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Hiroki Nagai
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan.,Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Cantas Alev
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8507, Japan
| | - Takeya Kasukawa
- Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Sapna Chhabra
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX 77251, USA
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX 77005, USA
| | - Tatsuo Shibata
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan .,Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| |
Collapse
|
46
|
Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, Latif FA, West MP, Gurden R, Finlayson L, Svambaryte S, West AG, West KL. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model. Epigenetics Chromatin 2019; 12:73. [PMID: 31831052 PMCID: PMC6907237 DOI: 10.1186/s13072-019-0320-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Background Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. Results We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. Conclusions We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.
Collapse
Affiliation(s)
- Sylvia Garza-Manero
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Abdulmajeed Abdulghani A Sindi
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.,Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha-Alaqiq, Saudi Arabia
| | - Gokula Mohan
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ohoud Rehbini
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Valentine H M Jeantet
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Mariarca Bailo
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Faeezah Abdul Latif
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Maureen P West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ross Gurden
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Lauren Finlayson
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Silvija Svambaryte
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Adam G West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Katherine L West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK. .,School of Life Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
47
|
De Los Angeles A. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. Exp Cell Res 2019; 387:111747. [PMID: 31778671 DOI: 10.1016/j.yexcr.2019.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Pluripotency refers to the potential of single cells to form all cells and tissues of an organism. The observation that pluripotent stem cells can chimerize the embryos of evolutionarily distant species, albeit at very low efficiencies, could with further modifications, facilitate the production of human-animal interspecies chimeras. The generation of human-animal interspecies chimeras, if achieved, will enable practitioners to recapitulate pathologic human tissue formation in vivo and produce patient-specific organs inside livestock species. However, little is known about the nature of chimera-competent cellular states in primates. Here, I discuss recent advances in our understanding of the pluripotency continuum in humans and non-human primates (NHPs). Although undefined differences between humans and NHPs still justify the utility of studying human cells, the complementary use of NHP PS cells could also allow one to conduct pilot studies testing interspecies chimera generation strategies with reduced ethical concerns associated with human interspecies neurological chimerism. However, the availability of standardized, high-quality and validated NHP PS cell lines covering the spectrum of primate pluripotent states is lacking. Therefore, a clearer understanding of the primate pluripotency continuum will facilitate the complementary use of both human and NHP PS cells for testing interspecies organogenesis strategies, with the hope of one day enabling human organ generation inside livestock species.
Collapse
|
48
|
Wang Y, Hussein AM, Somasundaram L, Sankar R, Detraux D, Mathieu J, Ruohola-Baker H. microRNAs Regulating Human and Mouse Naïve Pluripotency. Int J Mol Sci 2019; 20:E5864. [PMID: 31766734 PMCID: PMC6929104 DOI: 10.3390/ijms20235864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
microRNAs are ~22bp nucleotide non-coding RNAs that play important roles in the post-transcriptional regulation of gene expression. Many studies have established that microRNAs are important for cell fate choices, including the naïve to primed pluripotency state transitions, and their intermediate state, the developmentally suspended diapause state in early development. However, the full extent of microRNAs associated with these stage transitions in human and mouse remain under-explored. By meta-analysis of microRNA-seq, RNA-seq, and metabolomics datasets from human and mouse, we found a set of microRNAs, and importantly, their experimentally validated target genes that show consistent changes in naïve to primed transitions (microRNA up, target genes down, or vice versa). The targets of these microRNAs regulate developmental pathways (e.g., the Hedgehog-pathway), primary cilium, and remodeling of metabolic processes (oxidative phosphorylation, fatty acid metabolism, and amino acid transport) during the transition. Importantly, we identified 115 microRNAs that significantly change in the same direction in naïve to primed transitions in both human and mouse, many of which are novel candidate regulators of pluripotency. Furthermore, we identified 38 microRNAs and 274 target genes that may be involved in diapause, where embryonic development is temporarily suspended prior to implantation to uterus. The upregulated target genes suggest that microRNAs activate stress response in the diapause stage. In conclusion, we provide a comprehensive resource of microRNAs and their target genes involved in naïve to primed transition and in the paused intermediate, the embryonic diapause stage.
Collapse
Affiliation(s)
- Yuliang Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
| | - Abdiasis M. Hussein
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Logeshwaran Somasundaram
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rithika Sankar
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Damien Detraux
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (A.M.H.); (L.S.); (R.S.); (D.D.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Untargeted histone profiling during naive conversion uncovers conserved modification markers between mouse and human. Sci Rep 2019; 9:17240. [PMID: 31754138 PMCID: PMC6872658 DOI: 10.1038/s41598-019-53681-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022] Open
Abstract
Recent progress has enabled the conversion of primed human embryonic stem cells (hESCs) to the naive state of pluripotency, resembling the well-characterized naive mouse ESCs (mESCs). However, a thorough histone epigenetic characterization of this conversion process is currently lacking, while its likeness to the mouse model has not been clearly established. Here, we profile the histone epigenome of hESCs during conversion in a time-resolved experimental design, using an untargeted mass spectrometry-based approach. In total, 23 histone post-translational modifications (hPTMs) changed significantly over time. H3K27Me3 was the most prominently increasing marker hPTM in naive hESCs. This is in line with previous reports in mouse, prompting us to compare all the shared hPTM fold changes between mouse and human, revealing a set of conserved hPTM markers for the naive state. Principally, we present the first roadmap of the changing human histone epigenome during the conversion of hESCs from the primed to the naive state. This further revealed similarities with mouse, which hint at a conserved mammalian epigenetic signature of the ground state of pluripotency.
Collapse
|
50
|
MacDougall MS, Clarke R, Merrill BJ. Intracellular Ca 2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell 2019; 25:210-224.e6. [PMID: 31104942 PMCID: PMC6685429 DOI: 10.1016/j.stem.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Abstract
Progression through states of pluripotency is required for cells in early mammalian embryos to transition away from heightened self-renewal and toward competency for lineage specification. Here, we use a CRISPR mutagenesis screen in mouse embryonic stem cells (ESCs) to identify unexpected roles for nuclear export and intracellular Ca2+ homeostasis during the exit out of the naive state of pluripotency. Mutation of a plasma membrane Ca2+ pump encoded by Atp2b1 increased intracellular Ca2+ such that it overcame effects of intracellular Ca2+ reduction, which is required for naive exit. Persistent self-renewal of ESCs was supported both in Atp2b1-/-Tcf7l1-/- double-knockout ESCs passaged in defined media alone (no LIF or inhibitors) and in wild-type cells passaged in media containing only calcitonin and a GSK3 inhibitor. These new findings suggest a central role for intracellular Ca2+ in safeguarding naive pluripotency.
Collapse
Affiliation(s)
- Matthew S MacDougall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ryan Clarke
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA; Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|