1
|
Garcia-Carrillo E, Ramirez-Campillo R, Izquierdo M, Elnaggar RK, Afonso J, Peñailillo L, Araneda R, Ebner-Karestinos D, Granacher U. Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sports (Basel) 2024; 12:152. [PMID: 38921846 PMCID: PMC11207881 DOI: 10.3390/sports12060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this systematic review was to assess the effects of plyometric-jump training (PJT) on the physical fitness of youth with cerebral palsy (CP) compared with controls (i.e., standard therapy). The PRISMA 2020 guidelines were followed. Eligibility was assessed using the PICOS approach. Literature searches were conducted using the PubMed, Web of Science, and SCOPUS databases. Methodological study quality was assessed using the PEDro scale. Data were meta-analyzed by applying a random-effects model to calculate Hedges' g effect sizes (ES), along with 95% confidence intervals (95% CI). The impact of heterogeneity was assessed (I2 statistic), and the certainty of evidence was determined using the GRADE approach. Eight randomized-controlled studies with low-to-moderate methodological quality were included, involving male (n = 225) and female (n = 138) youth aged 9.5 to 14.6 years. PJT interventions lasted between 8 and 12 weeks with 2-4 weekly sessions. Compared with controls, PJT improved the muscle strength (ES = 0.66 [moderate], 95% CI = 0.36-0.96, p < 0.001, I2 = 5.4%), static (ES = 0.69 [moderate], 95% CI= 0.33-1.04, p < 0.001, I2 = 0.0%) and dynamic balance (ES = 0.85 [moderate], 95% CI = 0.12-1.58, p = 0.023, I2 = 81.6%) of youth with CP. Therefore, PJT improves muscle strength and static and dynamic balance in youth with CP compared with controls. However, more high-quality randomized-controlled trials with larger sample sizes are needed to provide a more definitive recommendation regarding the use and safety of PJT to improve measures of physical fitness.
Collapse
Affiliation(s)
- Exal Garcia-Carrillo
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile; (E.G.-C.); (R.R.-C.); (L.P.); (R.A.); (D.E.-K.)
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Navarra Institute for Health Research (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain;
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile; (E.G.-C.); (R.R.-C.); (L.P.); (R.A.); (D.E.-K.)
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Navarra Institute for Health Research (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain;
| | - Ragab K. Elnaggar
- Department of Physical Therapy and Health Rehabilitation, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza 12613, Egypt
| | - José Afonso
- Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200450 Porto, Portugal;
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile; (E.G.-C.); (R.R.-C.); (L.P.); (R.A.); (D.E.-K.)
| | - Rodrigo Araneda
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile; (E.G.-C.); (R.R.-C.); (L.P.); (R.A.); (D.E.-K.)
| | - Daniela Ebner-Karestinos
- Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile; (E.G.-C.); (R.R.-C.); (L.P.); (R.A.); (D.E.-K.)
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, 79102 Freiburg, Germany
| |
Collapse
|
2
|
Hui Z, Qi W, Zhang Y, Wang M, Zhang J, Li D, Zhu D. Efficacy of a Soft Robotic Exoskeleton to Improve Lower Limb Motor Function in Children with Spastic Cerebral Palsy: A Single-Blinded Randomized Controlled Trial. Brain Sci 2024; 14:425. [PMID: 38790405 PMCID: PMC11118818 DOI: 10.3390/brainsci14050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Soft robotic exoskeletons (SREs) are portable, lightweight assistive technology with therapeutic potential for improving lower limb motor function in children with cerebral palsy. To understand the effects of long-term SRE-assisted walking training on children with spastic cerebral palsy (SCP), we designed a study aiming to elucidate the effects of SRE-assisted walking training on lower limb motor function in this population. METHODS In this randomized, single-blinded (outcome assessor) controlled trial, forty children diagnosed with SCP were randomized into the routine rehabilitation (RR) group (N = 20) and the SRE group (N = 20) for comparison. The RR group received routine rehabilitation training, and the SRE group received routine rehabilitation training combined with SRE-assisted overground walking training. Assessments (without SRE) were conducted pre- and post-intervention (8 weeks after the intervention). The primary outcome measures included the 10 m walk test (10MWT) and the 6 min walk test (6MWT). Secondary outcome measures comprised the gross motor function measure-88, pediatric balance scale modified Ashworth scale, and physiological cost index. RESULTS Both groups showed significant improvements (p < 0.01) across all outcome measures after the 8-week intervention. Between-group comparisons using ANCOVA revealed that the SRE group demonstrated greater improvement in walking speed from the 10MWT (+6.78 m/min, 95% CI [5.74-7.83]; p < 0.001) and walking distance during the 6MWT (+34.42 m, 95% CI [28.84-39.99]; p < 0.001). The SRE group showed greater improvement in all secondary outcome measures (p < 0.001). CONCLUSIONS The study findings suggested that the integration of SRE-assisted overground walking training with routine rehabilitation more effectively enhances lower limb motor function in children with SCP compared to routine rehabilitation alone.
Collapse
Affiliation(s)
- Zhichong Hui
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Weihang Qi
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Yi Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Mingmei Wang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Jiamei Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Dong Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
| | - Dengna Zhu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; (Z.H.); (W.Q.); (Y.Z.); (M.W.); (J.Z.); (D.L.)
- Zhengzhou Key Laboratory of the Prevention and Cure of Cerebral Palsy Children, Zhengzhou 450052, China
| |
Collapse
|
3
|
Casey J, Rosenblad A, Agustsson A, Lauge-Pedersen H, Rodby-Bousquet E. Incidence and sequence of scoliosis and windswept hip deformity: which comes first in 4148 children with cerebral palsy? A longitudinal cohort study. BMC Musculoskelet Disord 2024; 25:222. [PMID: 38504256 PMCID: PMC10953287 DOI: 10.1186/s12891-024-07350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The aim was to analyse whether scoliosis or windswept hip deformity (WSH) occurs first for children with cerebral palsy (CP). METHODS This longitudinal cohort study using data from 1994 - 2020 (26 years) involved 41,600 measurements of 4148 children (2419 [58.3%] boys) with CP born 1990 - 2018 and registered into the Swedish CP follow-up program. Children were followed from a mean age of 2.8 [SD 1.4] years, until they developed either scoliosis or WSH or were removed at surgery. RESULTS WSH developed first in 16.6% of the children (mean age 8.1 [SD 5.0] years), and scoliosis in 8.1% (mean age 8.1 [SD 4.9] years). The incidence of WSH was higher than scoliosis across all levels I-V of the Gross Motor Function Classification System (GMFCS), both sexes, and for those with dyskinetic (20.0%) or spastic (17.0%) CP. The incidence of scoliosis was highest (19.8%) and developed earliest in children with GMFCS level V (mean age 5.5 [SD 3.5] years), and in children with dyskinetic (17.9%) CP (mean age 7.0 [SD 4.7] years). CONCLUSIONS WSH presents earlier than scoliosis in most children with CP. Children with higher GMFCS level or dyskinetic CP are more likely to develop these deformities at a younger age.
Collapse
Affiliation(s)
- Jackie Casey
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, 221 85, Sweden
- Research & Development Office, Southern Health & Social Care Trust, Craigavon, Northern Ireland
- School of Nursing & Paramedic Sciences, Ulster University, Belfast, Northern Ireland
| | - Andreas Rosenblad
- Department of Statistics, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Division of Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Solna, Sweden
| | - Atli Agustsson
- Department of Physiotherapy, Research Centre of Movement Science, University of Iceland, Reykjavik, Iceland
| | - Henrik Lauge-Pedersen
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, 221 85, Sweden
| | - Elisabet Rodby-Bousquet
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, 221 85, Sweden.
- Centre for Clinical Research, Uppsala University-Region Västmanland, Västerås, 721 89, Sweden.
| |
Collapse
|
4
|
Jonsson U. Mobility for individuals with cerebral palsy: Shifting the focus from method to independence. Dev Med Child Neurol 2024; 66:275-276. [PMID: 37649270 DOI: 10.1111/dmcn.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
This commentary is on the original article by Noten et al. on pages 326–332 of this issue.
Collapse
Affiliation(s)
- Ulrica Jonsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Habilitation & Health, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Bartonek Å, Lidbeck C. Knee Flexion While Walking Exceeds Knee Flexion Contracture in Children with Spastic Cerebral Palsy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1867. [PMID: 38136069 PMCID: PMC10741394 DOI: 10.3390/children10121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Flexed knee gait is commonly related to contractures in children with cerebral palsy (CP). Therefore, knee position while walking was compared with passive knee extension and explored with respect to functional mobility. Gait was assessed with 3D motion analysis in 30 children with bilateral spastic CP, Gross Motor Function Classification System (GMFCS) levels I-III, and in 22 typically developing (TD) children. Knee angle at initial contact (KneeAngleIC) was greater than knee flexion in stance (MinKneeFlexSt) in all groups. MinKneeFlexSt exceeded knee contractures at GMFCS levels II and III. Both KneeAngleIC and MinKneeFlexSt were greater at GMFCS II and III than at GMFCS I and the TD group. The excessive knee flexion while walking at GMFCS II and III could not be explained by knee joint contractures. Functional mobility measured with the timed-up-and-go test took longer in children at GMFCS level III compared to the other groups, assumed to be explained by the energy-requiring flexed knee gait and spatial insecurity. Discriminating between passive knee extension at the physical assessment and maximum knee extension while weight bearing may contribute to further understanding of flexed knee gait and its causes in ambulating children with spastic bilateral CP.
Collapse
Affiliation(s)
- Åsa Bartonek
- Division of Paediatric Neurology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-17176 Stockholm, Sweden;
| | - Cecilia Lidbeck
- Division of Paediatric Neurology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-17176 Stockholm, Sweden;
- Motion Analysis Laboratory, Karolinska University Hospital, QA:27, Karolinska vägen 37A, SE-17176 Stockholm, Sweden
| |
Collapse
|