1
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
2
|
Llewellyn DC, Logan Ellis H, Aylwin SJB, Oštarijaš E, Green S, Sheridan W, Chew NWS, le Roux CW, Miras AD, Patel AG, Vincent RP, Dimitriadis GK. The efficacy of GLP-1RAs for the management of postprandial hypoglycemia following bariatric surgery: a systematic review. Obesity (Silver Spring) 2023; 31:20-30. [PMID: 36502288 PMCID: PMC10107620 DOI: 10.1002/oby.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Postprandial hyperinsulinemic hypoglycemia with neuroglycopenia is an increasingly recognized complication of Roux-en-Y gastric bypass and gastric sleeve surgery that may detrimentally affect patient quality of life. One likely causal factor is glucagon-like peptide-1 (GLP-1), which has an exaggerated rise following ingestion of carbohydrates after bariatric surgery. This paper sought to assess the role of GLP-1 receptor agonists (GLP-1RAs) in managing postprandial hypoglycemia following bariatric surgery. METHODS MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and Scopus were systematically and critically appraised for all peer-reviewed publications that suitably fulfilled the inclusion criteria established a priori. This systematic review was developed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P). It followed methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions and is registered with PROSPERO (International Prospective Register of Systematic Reviews; identifier CRD420212716429). RESULTS AND CONCLUSIONS Postprandial hyperinsulinemic hypoglycemia remains a notoriously difficult to manage metabolic complication of bariatric surgery. This first, to the authors' knowledge, systematic review presents evidence suggesting that use of GLP-1RAs does not lead to an increase of hypoglycemic episodes, and, although this approach may appear counterintuitive, the findings suggest that GLP-1RAs could reduce the number of postprandial hypoglycemic episodes and improve glycemic variability.
Collapse
Affiliation(s)
- David C. Llewellyn
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Hugh Logan Ellis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Simon J. B. Aylwin
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Eduard Oštarijaš
- Institute for Translational MedicineUniversity of Pécs Medical School, University of PécsPécsHungary
| | - Shauna Green
- Department of Acute MedicineLewisham and Greenwich NHS Foundation Trust, Queen Elizabeth HospitalLondonUK
| | - William Sheridan
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart Centre, National University HospitalSingaporeSingapore
| | - Carel W. le Roux
- Diabetes Complication Research Centre, School of Medicine and Medical ScienceUCD Conway Institute, University College DublinBelfieldIreland
| | - Alexander D. Miras
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Ameet G. Patel
- Department of Minimal Access SurgeryKing's College Hospital NHS Foundation TrustLondonUK
| | - Royce P. Vincent
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
- Department of Clinical BiochemistryKing's College Hospital NHS Foundation TrustLondonUK
| | - Georgios K. Dimitriadis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
- Faculty of Life Sciences and Medicine, School of Cardiovascular Medicine and Sciences, Obesity, Type 2 Diabetes and Immunometabolism Research GroupKing's College LondonLondonUK
- Division of Reproductive Health, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
3
|
Affiliation(s)
- Jens J Holst
- The Department of Biomedical Research, University of Copenhagen, Copenhagen, Denmark.
- The NovoNordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Hindsø M, Svane MS, Hedbäck N, Holst JJ, Madsbad S, Bojsen-Møller KN. The role of GLP-1 in postprandial glucose metabolism after bariatric surgery: a narrative review of human GLP-1 receptor antagonist studies. Surg Obes Relat Dis 2021; 17:1383-1391. [PMID: 33771461 DOI: 10.1016/j.soard.2021.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) bariatric procedures lead to remission or improvement of type 2 diabetes. A weight loss-independent augmentation of postprandial insulin secretion contributes to the improvement in glycemic control after RYGB and is associated with a ∼10-fold increase in plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the physiologic importance of the markedly increased postprandial GLP-1 secretion after RYGB has been much debated. The effect of GLP-1 receptor blockade after RYGB has been investigated in 12 studies. The studies indicate a shift toward a more prominent role for GLP-1 in postprandial β-cell function after RYGB. The effect of GLP-1 receptor antagonism on glucose tolerance after RYGB is more complex and is associated with important methodological challenges. The postprandial GLP-1 response is less enhanced after SG compared with RYGB. However, the effect of GLP-1 receptor blockade after SG has been examined in 1 study only and needs further investigation.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen and Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
5
|
Surgical Treatment for Postprandial Hypoglycemia After Roux-en-Y Gastric Bypass: a Literature Review. Obes Surg 2021; 31:1801-1809. [PMID: 33523415 DOI: 10.1007/s11695-021-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) is an effective treatment for severe obesity and obesity-related comorbidities. Postprandial hypoglycemia may occur as a long-term complication after RYGB. This study reviews the literature on surgical treatment for intractable post-RYGB hypoglycemia to provide updated information. A search was performed in Embase and PubMed, and 25 papers were identified. Thirteen papers on reversal were included. Resolution of postprandial hypoglycemic symptoms occurred in 42/48 (88%) patients after reversal. Twelve papers on pancreatectomy were included. Resolution occurred in 27/50 (54%) patients after pancreatectomy. The optimal surgical treatment for intractable post-RYGB hypoglycemia has not been defined, but reversal of RYGB seems to be more effective than other treatments. Further research on etiology and long-term evaluation of surgical outcomes may refine treatment options.
Collapse
|
6
|
Mulla CM, Zavitsanou S, Laguna Sanz AJ, Pober D, Richardson L, Walcott P, Arora I, Newswanger B, Cummins MJ, Prestrelski SJ, Doyle FJ, Dassau E, Patti ME. A Randomized, Placebo-Controlled Double-Blind Trial of a Closed-Loop Glucagon System for Postbariatric Hypoglycemia. J Clin Endocrinol Metab 2020; 105:dgz197. [PMID: 31714583 PMCID: PMC7174034 DOI: 10.1210/clinem/dgz197] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) can threaten safety and reduce quality of life. Current therapies are incompletely effective. METHODS Patients with PBH were enrolled in a double-blind, placebo-controlled, crossover trial to evaluate a closed-loop glucose-responsive automated glucagon delivery system designed to reduce severe hypoglycemia. A hypoglycemia detection and mitigation algorithm was embedded in the artificial pancreas system connected to a continuous glucose monitor (CGM, Dexcom) driving a patch infusion pump (Insulet) filled with liquid investigational glucagon (Xeris) or placebo (vehicle). Sensor/plasma glucose responses to mixed meal were assessed during 2 study visits. The system delivered up to 2 doses of study drug (300/150 μg glucagon or equal-volume vehicle) if triggered by the algorithm. Rescue dextrose was given for plasma glucose <55 mg/dL or neuroglycopenia. RESULTS Twelve participants (11 females/1 male, age 52 ± 2, 8 ± 1 years postsurgery, mean ± SEM) completed all visits. Predictive hypoglycemia alerts prompted automated drug delivery postmeal, when sensor glucose was 114 ± 7 vs 121 ± 5 mg/dL (P = .39). Seven participants required rescue glucose after vehicle but not glucagon (P = .008). Five participants had severe hypoglycemia (<55 mg/dL) after vehicle but not glucagon (P = .03). Nadir plasma glucose was higher with glucagon vs vehicle (67 ± 3 vs 59 ± 2 mg/dL, P = .004). Plasma glucagon rose after glucagon delivery (1231 ± 187 vs 16 ± 1 pg/mL at 30 minutes, P = .001). No rebound hyperglycemia occurred. Transient infusion site discomfort was reported with both glucagon (n = 11/12) and vehicle (n = 10/12). No other adverse events were observed. CONCLUSION A CGM-guided closed-loop rescue system can detect imminent hypoglycemia and deliver glucagon, reducing severe hypoglycemia in PBH. CLINICAL TRIALS REGISTRATION NCT03255629.
Collapse
Affiliation(s)
| | - Stamatina Zavitsanou
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | | - David Pober
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | | | - Ipsa Arora
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | | | | | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Eyal Dassau
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | |
Collapse
|
7
|
Svane MS, Bojsen-Møller KN, Martinussen C, Dirksen C, Madsen JL, Reitelseder S, Holm L, Rehfeld JF, Kristiansen VB, van Hall G, Holst JJ, Madsbad S. Postprandial Nutrient Handling and Gastrointestinal Hormone Secretion After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology 2019; 156:1627-1641.e1. [PMID: 30742833 DOI: 10.1053/j.gastro.2019.01.262] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) induce substantial weight loss and improve glycemic control in patients with type 2 diabetes, but it is not clear whether these occur via the same mechanisms. We compared absorption rates of glucose and protein, as well as profiles of gastro-entero-pancreatic hormones, in patients who had undergone SG or RYGB vs controls. METHODS We performed a cross-sectional study of 12 patients who had undergone sleeve gastrectomy, 12 patients who had undergone RYGB, and 12 individuals who had undergone neither surgery (controls), all in Denmark. Study participants were matched for body mass index, age, sex, and postoperative weight loss, and all had stable weights. They received continuous infusions of stable isotopes of glucose, glycerol, phenylalanine, tyrosine, and urea before and during a mixed meal containing labeled glucose and intrinsically phenylalanine-labeled caseinate. Blood samples were collected for 6 hours, at 10- to 60-minute intervals, and analyzed. RESULTS The systemic appearance of ingested glucose was faster after RYGB and SG vs controls; the peak glucose appearance rate was 64% higher after RYGB, and 23% higher after SG (both P < .05); the peak phenylalanine appearance rate from ingested casein was 118% higher after RYGB (P < .01), but similar between patients who had undergone SG and controls. Larger, but more transient increases in levels of plasma glucose and amino acids were accompanied by higher secretion of insulin, glucagon-like peptide 1, peptide YY, and cholecystokinin after RYGB, whereas levels of ghrelin were lower after SG, compared with RYGB and controls. Total 6-hour oral recovery of ingested glucose and protein was comparable among groups. CONCLUSIONS Postprandial glucose and protein absorption and gastro-entero-pancreatic hormone secretions differ after SG and RYGB. RYGB was characterized by accelerated absorption of glucose and amino acids, whereas protein metabolism after SG did not differ significantly from controls, suggesting that different mechanisms explain improved glycemic control and weight loss after these surgical procedures. ClinicalTrials.gov ID NCT03046186.
Collapse
Affiliation(s)
- Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Christoffer Martinussen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jan L Madsen
- Department of Clinical Physiology and Nuclear Medicine, Centre for Functional Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital Hvidovre, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Bojsen-Møller KN, Lundsgaard AM, Madsbad S, Kiens B, Holst JJ. Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations-Role of Carbohydrate and Energy Availability. Diabetes 2018; 67:2129-2136. [PMID: 30348819 DOI: 10.2337/db18-0539] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022]
Abstract
Hyperinsulinemia is the hallmark of insulin resistance in obesity, and the relative importance of insulin clearance, insulin resistance, and insulin hypersecretion has been widely debated. On the basis of recent experimental evidence, we summarize existing evidence to suggest hepatic insulin clearance as a major and immediate regulator of systemic insulin concentrations responding within days to altered dietary energy and, in particular, carbohydrate intake. Hepatic insulin clearance seems to be closely associated with opposite alterations in hepatic lipid content and glucose production, providing a potential mechanistic link to hepatic insulin sensitivity. The molecular regulation of insulin clearance in the liver is likely to involve changes in insulin binding and receptor internalization in response to the dietary alterations, the molecular mechanisms of which await further research.
Collapse
Affiliation(s)
- Kirstine N Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, Martinussen C. Mechanisms in bariatric surgery: Gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis 2018; 14:708-714. [PMID: 29776493 PMCID: PMC5974695 DOI: 10.1016/j.soard.2018.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/04/2018] [Indexed: 12/11/2022]
Abstract
Gastric bypass surgery leads to profound changes in the secretion of gut hormones with effects on metabolism, appetite, and food intake. Here, we discuss their contributions to the improvement in glucose tolerance and the weight loss that results from the operations. We find that the improved glucose tolerance is due the following events: a negative energy balance and resulting weight loss, which improve first hepatic and later peripheral insulin sensitivity, in combination with increased postprandial insulin secretion elicited particularly by exaggerated glucagon-like peptide-1 responses. The weight loss is due to loss of appetite resulting in reduced energy intake, and we find it probable that this process is driven by exaggerated secretion of appetite-regulating gut hormones including, but probably not limited to, glucagon-like peptide-1 and peptide-YY. The increased secretion is due to an accelerated exposure to and absorption of nutrients in the small intestine. This places the weight loss and the gut hormones in key positions with respect to the metabolic improvements after bypass surgery.
Collapse
Affiliation(s)
- Jens Juul Holst
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sten Madsbad
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Maria Saur Svane
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nils Bruun Jørgensen
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Dirksen
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Martinussen
- NNF Center for Basic Metabolic Research and Dept. Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|