1
|
Rochford JJ. When Adipose Tissue Lets You Down: Understanding the Functions of Genes Disrupted in Lipodystrophy. Diabetes 2022; 71:589-598. [PMID: 35316838 DOI: 10.2337/dbi21-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Lipodystrophy syndromes are conditions in which the adipose tissue mass of an individual is altered inappropriately. The change in adipose mass can range from a relatively modest and subtle redistribution in some individuals with partial lipodystrophy to a near-complete absence of adipose tissue in the most severe forms of generalized lipodystrophy. The common feature is a disconnection between the need of the individual for a safe, healthy lipid storage capacity and the available adipose mass to perform this critical role. The inability to partition lipids for storage in appropriately functioning adipocytes leads to lipid accumulation in other tissues, which typically results in conditions such as diabetes, dyslipidemia, fatty liver, and cardiovascular disease. Several genes have been identified whose disruption leads to inherited forms of lipodystrophy. There is a link between some of these genes and adipose dysfunction, so the molecular basis of disease pathophysiology appears clear. However, for other lipodystrophy genes, it is not evident why their disruption should affect adipose development or function or, in the case of partial lipodystrophy, why only some adipose depots should be affected. Elucidating the molecular functions of these genes and their cellular and physiological effects has the capacity to uncover fundamental new insights regarding the development and functions of adipose tissue. This information is also likely to inform better management of lipodystrophy and improved treatments for patients. In addition, the findings will often be relevant to other conditions featuring adipose tissue dysfunction, including the more common metabolic disease associated with obesity.
Collapse
|
2
|
Rodriguez-Cuenca S, Lelliot CJ, Campbell M, Peddinti G, Martinez-Uña M, Ingvorsen C, Dias AR, Relat J, Mora S, Hyötyläinen T, Zorzano A, Orešič M, Bjursell M, Bohlooly-Y M, Lindén D, Vidal-Puig A. Allostatic hypermetabolic response in PGC1α/β heterozygote mouse despite mitochondrial defects. FASEB J 2021; 35:e21752. [PMID: 34369602 DOI: 10.1096/fj.202100262rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
Aging, obesity, and insulin resistance are associated with low levels of PGC1α and PGC1β coactivators and defective mitochondrial function. We studied mice deficient for PGC1α and PGC1β [double heterozygous (DH)] to investigate their combined pathogenic contribution. Contrary to our hypothesis, DH mice were leaner, had increased energy dissipation, a pro-thermogenic profile in BAT and WAT, and improved carbohydrate metabolism compared to wild types. WAT showed upregulation of mitochondriogenesis/oxphos machinery upon allelic compensation of PGC1α4 from the remaining allele. However, DH mice had decreased mitochondrial OXPHOS and biogenesis transcriptomes in mitochondria-rich organs. Despite being metabolically healthy, mitochondrial defects in DH mice impaired muscle fiber remodeling and caused qualitative changes in the hepatic lipidome. Our data evidence first the existence of organ-specific compensatory allostatic mechanisms are robust enough to drive an unexpected phenotype. Second, optimization of adipose tissue bioenergetics is sufficient to maintain a healthy metabolic phenotype despite a broad severe mitochondrial dysfunction in other relevant metabolic organs. Third, the decrease in PGC1s in adipose tissue of obese and diabetic patients is in contrast with the robustness of the compensatory upregulation in the adipose of the DH mice.
Collapse
Affiliation(s)
| | | | - Mark Campbell
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gopal Peddinti
- VTT, Technical Research Center of Finland, Espoo, Finland
| | - Maite Martinez-Uña
- Department of Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Camilla Ingvorsen
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ana Rita Dias
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus, University of Barcelona (UB), Santa Coloma de Gramenet, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Silvia Mora
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| | | | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Dept. Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Matej Orešič
- School of Science and Technology, Örebro University, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
3
|
Rodriguez‐Cuenca S, Carobbio S, Barceló‐Coblijn G, Prieur X, Relat J, Amat R, Campbell M, Dias AR, Bahri M, Gray SL, Vidal‐Puig A. P465L-PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes Obes Metab 2018; 20:2339-2350. [PMID: 29790245 PMCID: PMC6589924 DOI: 10.1111/dom.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated with this mutation using a humanized mouse model that recapitulates most of the clinical symptoms observed in patients who have been phenotyped under different experimental conditions. One of the key clinical manifestations observed, both in humans and mouse models, is the ectopic accumulation of fat in the liver. With this study we aim to dissect the molecular mechanisms that contribute to the excessive accumulation of lipids in the liver and characterize the negative effect of this PPARγ mutation on the activity of PPARα in vivo when activated by fibrates. MATERIAL AND METHODS P465L-PPAR mutant and wild-type mice were divided into 8 experimental groups, 4 different conditions per genotype. Briefly, mice were fed a chow diet or a high-fat diet (HFD 45% Kcal from fat) for a period of 28 days and treated with WY14643 or vehicle for five days before culling. At the end of the experiment, tissues and plasma were collected. We performed extensive gene expression, fatty acid composition and histological analysis in the livers. The serum collected was used to measure several metabolites and to perform basic lipoprotein profile. RESULTS P465L mice showed increased levels of insulin and free fatty acids (FFA) as well as increased liver steatosis. They also exhibit decreased levels of very low density lipoproteins (VLDL) when fed an HFD. We also provide evidence of impaired expression of a number of well-established PPARα target genes in the P465L mutant livers. CONCLUSION Our data demonstrate that P465L confers partial resistance to the hypolipidemic action of fibrates. These results show that the fatty liver phenotype observed in P465L mutant mice is not only the consequence of dysfunctional adipose tissue, but also involves defective liver metabolism. All in all, the deleterious effects of P465L-PPARγ mutation may be magnified by their collateral negative effect on PPARα function.
Collapse
Affiliation(s)
- Sergio Rodriguez‐Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Gwendolyn Barceló‐Coblijn
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute)PalmaSpain
| | - Xavier Prieur
- Département des Sciences de la Vie, L'Institut du Thorax, INSERM, CNRSUniversité de NantesNantesFrance
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus. University of Barcelona (UB), Santa Coloma de Gramenet (Spain); INSA‐UB, Nutrition and Food Safety Research InstituteUniversity of BarcelonaBarcelonaSpain
| | - Ramon Amat
- Cell Signaling Unit, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Mark Campbell
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Ana Rita Dias
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Myriam Bahri
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Sarah L. Gray
- Northern Medical ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Antonio Vidal‐Puig
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| |
Collapse
|
4
|
Hong F, Xu P, Zhai Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int J Mol Sci 2018; 19:ijms19082189. [PMID: 30060458 PMCID: PMC6121873 DOI: 10.3390/ijms19082189] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer's disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|