1
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Hanu C, Wong R, Sur RK, Hayward JE, Seymour C, Mothersill C. Low-dose non-targeted radiation effects in human esophageal adenocarcinoma cell lines. Int J Radiat Biol 2016; 93:165-173. [PMID: 27653785 DOI: 10.1080/09553002.2017.1237057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate non-targeted radiation effects in esophageal adenocarcinoma cell lines (OE19 and OE33) using human keratinocyte and colorectal cancer cell reporters following γ-ray exposure. MATERIALS AND METHODS Both clonogenic assays and ratiometric calcium endpoints were used to check for the occurrence of bystander signals in reporter cells. RESULTS We report data suggesting that γ-irradiation increases cell killing over the expected linear quadratic (LQ) model levels in the OE19 cell line exposed to doses below 1 Gy, i.e. which may be suggestive to be a low hyper-radiosensitive (HRS) response to direct irradiation. Both EAC cell lines (OE19 and OE33) have the ability to produce bystander signals when irradiated cell conditioned medium (ICCM) is placed onto human keratinocyte reporters, but do not seem to be capable of responding to bystander signals when placed on their autologous reporters. Further work with human keratinocyte reporter models showed statistically significant intracellular calcium fluxes following exposure of the reporters to ICCM harvested from both EAC cell lines exposed to 0.5 Gy. CONCLUSION These experiments suggest that the OE19 and OE33 cell lines produce bystander signals in human keratinocyte reporter cells. However, the radiosensitivity of the EAC cell lines used in this study cannot be enhanced by the bystander response since both cell lines could not respond to bystander signals.
Collapse
Affiliation(s)
- Christine Hanu
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| | - Raimond Wong
- b Department of Oncology and McMaster University , Hamilton , ON , Canada
| | - Ranjan K Sur
- b Department of Oncology and McMaster University , Hamilton , ON , Canada
| | - Joseph E Hayward
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada.,c Department of Radiology , McMaster University , Hamilton , ON , Canada
| | - Colin Seymour
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| | - Carmel Mothersill
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
3
|
Garcia E, Hayden A, Birts C, Britton E, Cowie A, Pickard K, Mellone M, Choh C, Derouet M, Duriez P, Noble F, White MJ, Primrose JN, Strefford JC, Rose-Zerilli M, Thomas GJ, Ang Y, Sharrocks AD, Fitzgerald RC, Underwood TJ. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1. Sci Rep 2016; 6:32417. [PMID: 27600491 PMCID: PMC5013399 DOI: 10.1038/srep32417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project.
Collapse
Affiliation(s)
- Edwin Garcia
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Annette Hayden
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Charles Birts
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Edward Britton
- Faculty of Biology, Medicine and Health, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew Cowie
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Karen Pickard
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Massimiliano Mellone
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Clarisa Choh
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Mathieu Derouet
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Patrick Duriez
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Fergus Noble
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Michael J. White
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - John N. Primrose
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Jonathan C. Strefford
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Matthew Rose-Zerilli
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Gareth J. Thomas
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Yeng Ang
- Faculty of Biology, Medicine and Health, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D. Sharrocks
- Faculty of Biology, Medicine and Health, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ United Kingdom
| | - Timothy J. Underwood
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 801, South Academic Block, Tremona Road, Southampton, SO16 6YD, United Kingdom
| |
Collapse
|
6
|
Characterization of a novel tumorigenic esophageal adenocarcinoma cell line: OANC1. Dig Dis Sci 2014; 59:78-88. [PMID: 24077944 DOI: 10.1007/s10620-013-2882-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) has a very high case fatality rate and is one of the fastest rising cancers worldwide. At the same time, research into EAC has been hampered by a relative lack of pre-clinical models, including representative cell lines. AIM The purpose of this study was to establish and characterize a new EAC cell line. METHODS Tumor cells were isolated from EAC tissue by enzymatic digestion. Origin of the cell line was confirmed by microsatellite based genotyping. A panel of cancer-related genes was screened for mutations by targeted deep sequencing, Sanger sequencing and high resolution melting.CDKN2A promoter methylation was assessed by methylation specific high resolution melting. HER2 amplification was assessed by fluorescent in situ hybridization. Immunohistochemistry was used to assess expression of markers in xenografts grown in SCID mice. RESULTS A novel EAC cell line, OANC1, was derived from a Barrett's-associated EAC. Microsatellite-based genotyping of OANC1 and patient DNA confirmed the origin of the cell line. Sequencing of OANC1 DNA identified homozygous TP53 missense (c.856G[A, p.E286K)and SMAD4 nonsense (c.1333C[T, p.R445X) mutations.OANC1 are tumorigenic when injected sub-cutaneously into SCID mice and xenografts were positive for columnar, glandular and intestinal epithelial markers commonly expressed in EAC. Xenografts exhibited strong p53 expression, consistent with a TP53 mutation. Some proteins, including p16, EGFR and b-catenin, had heterogeneous expression patterns across xenograft cross-sections, indicative of tumor heterogeneity. CONCLUSIONS OANC1 represents a valuable addition to the limited range of pre-clinical models for EAC. This new cell line will be a useful model system for researchers studying both basic and translational aspects of this disease.
Collapse
|