1
|
Bai S, Guo J, Zhang H. A meta-analysis of the clinicopathological significance of the lncRNA MALAT1 in human gastric cancer. Front Oncol 2024; 13:1257120. [PMID: 38239645 PMCID: PMC10794718 DOI: 10.3389/fonc.2023.1257120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024] Open
Abstract
Background Dysregulation of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been linked to some oncogenic pathways that induce cancer initiation and progression. This meta-analysis was conducted to specifically summarize the most recent research on MALAT1 function in human gastric cancer (GC). Methods The eligible studies were first identified by searching HowNet, Web of Science, PubMed, The Cochrane Library, Embase, and Nature databases for studies published as of April 1, 2023. The meta-analysis included 14 studies assessing MALAT1 expression and presenting clinical parameters and survival outcomes. Results The results illustrated that high MALAT1 expression is predictive of lymph node metastasis (pooled odds ratio [OR] = 2.99, 95% confidence interval [CI] = 1.97-4.54, P < 0.001) and distant metastasis in GC (OR = 3.11, 95% CI = 1.68-5.75, P < 0.001). In addition, MALAT1 was associated with GC tumor invasion (T3/T4 vs. T1/T2: OR = 2.90, 95% CI = 1.90- 4.41, P <0.001) and TNM stage (III/IV vs I/II: OR = 2.93, 95% CI: 1.80-4.77, P <0.001). Additionally, higher MALAT-1 expression predicted poorer overall survival in patients with GC (hazard ratio = 1.64, 95% CI = 1.20-2.09, P < 0.001). Conclusions The current findings suggest that the high MALAT1 expression is an adverse biomarker for prognostic outcomes, lymph node metastasis, TNM stage, and distant metastasis in GC and MALAT1 could be a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Shaoxiong Bai
- Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | | | | |
Collapse
|
2
|
Morgado-Palacin L, Brown JA, Martinez TF, Garcia-Pedrero JM, Forouhar F, Quinn SA, Reglero C, Vaughan J, Heydary YH, Donaldson C, Rodriguez-Perales S, Allonca E, Granda-Diaz R, Fernandez AF, Fraga MF, Kim AL, Santos-Juanes J, Owens DM, Rodrigo JP, Saghatelian A, Ferrando AA. The TINCR ubiquitin-like microprotein is a tumor suppressor in squamous cell carcinoma. Nat Commun 2023; 14:1328. [PMID: 36899004 PMCID: PMC10006087 DOI: 10.1038/s41467-023-36713-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.
Collapse
Affiliation(s)
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Juana M Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yasamin Hajy Heydary
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Rocio Granda-Diaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Agustin F Fernandez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (ciberer) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (ciberer) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Arianna L Kim
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge Santos-Juanes
- Department of Dermatology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
- Dermatology Area, University of Oviedo Medical School, Oviedo, Asturias, Spain
| | - David M Owens
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Dermatology Area, University of Oviedo Medical School, Oviedo, Asturias, Spain.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 2022; 13:6840. [PMID: 36369429 PMCID: PMC9652315 DOI: 10.1038/s41467-022-34529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Collapse
|
4
|
Icduygu FM, Akgun E, Sengul D, Ozgoz A, Alp E. Expression of SOX2OT, DANCR and TINCR long non‑coding RNAs in papillary thyroid cancer and its effects on clinicopathological features. Mol Med Rep 2022; 25:120. [PMID: 35147200 PMCID: PMC8855165 DOI: 10.3892/mmr.2022.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) are molecules that are >200 base pairs long and do not encode a protein. However, they perform important roles in regulating gene expression. Recent studies have revealed that the changes in the expressions of lncRNAs serve a role in the development and metastases of a number of types of cancer. A number of studies have been published on the association of SOX2 overlapping transcript (SOX2OT), differentiation antagonizing non‑protein coding RNA (DANCR) and tissue differentiation‑induced non‑coding RNA (TINCR) expression with various types of cancer. However, researchers have not yet studied their roles in papillary thyroid cancer or at least, those roles are not clarified. The aim of the present study was to investigate the expression and clinical significance of SOX2OT, DANCR and TINCR in papillary thyroid cancer (PTC). A total of 102 patients with PTC were included in the present study. Reverse transcription‑quantitative PCR method was used to determine the relative gene expression levels of lncRNAs and then the relationship between expressions of lncRNAs and clinical characteristics of the subjects was analyzed in detail. Expression levels of SOX2OT (P=0.016) and DANCR (P=0.017) increased in the tumor samples in contrast to the normal tissues. No significant difference was observed in the expression level of TINCR (P=0.298). In addition, SOX2OT expression was associated with micro carcinoma (P<0.001), tumor size (P=0.010) and primary tumor (P=0.006), while DANCR expression was associated with age (P=0.030) and micro carcinoma (P=0.004). The findings of the present study indicated that DANCR may contribute to the development of PTC while SOX2OT may contribute to both the development and progression of PTC.
Collapse
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Egemen Akgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Demet Sengul
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Asuman Ozgoz
- Department of Medical Genetics, Faculty of Medicine, Kastamonu University, Kastamonu 37100, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| |
Collapse
|
5
|
A ubiquitin-like protein encoded by the "noncoding" RNA TINCR promotes keratinocyte proliferation and wound healing. PLoS Genet 2021; 17:e1009686. [PMID: 34351912 PMCID: PMC8341662 DOI: 10.1371/journal.pgen.1009686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) are transcripts that do not encode proteins by definition, some lncRNAs actually contain small open reading frames that are translated. TINCR (terminal differentiation-induced ncRNA) has been recognized as a lncRNA that contributes to keratinocyte differentiation. However, we here show that TINCR encodes a ubiquitin-like protein that is well conserved among species and whose expression was confirmed by the generation of mice harboring a FLAG epitope tag sequence in the endogenous open reading frame as well as by targeted proteomics. Forced expression of this protein promoted cell cycle progression in normal human epidermal keratinocytes, and mice lacking this protein manifested a delay in skin wound healing associated with attenuated cell cycle progression in keratinocytes. We termed this protein TINCR-encoded ubiquitin-like protein (TUBL), and our results reveal a role for TINCR in the regulation of keratinocyte proliferation and skin regeneration that is dependent on TUBL.
Collapse
|
6
|
He G, Pang R, Han J, Jia J, Ding Z, Bi W, Yu J, Chen L, Zhang J, Sun Y. TINCR inhibits the proliferation and invasion of laryngeal squamous cell carcinoma by regulating miR-210/BTG2. BMC Cancer 2021; 21:753. [PMID: 34187411 PMCID: PMC8243464 DOI: 10.1186/s12885-021-08513-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background Terminal differentiation-induced ncRNA (TINCR) plays an essential role in epidermal differentiation and is involved in the development of various cancers. Methods qPCR was used to detect the expression level of TINCR in tissues and cell lines of laryngeal squamous cell carcinoma (LSCC). The potential targets of TINCR were predicted by the bioinformation website. The expression of miR-210 and BTG2 genes were detected by qPCR, and the protein levels of BTG2 and Ki-67 were evaluated by western blot. CCK-8 assay, scratch test, and transwell chamber were used to evaluate the proliferation, invasion, and metastasis ability of LSCC cells. The relationships among TINCR, miR-210, and BTG2 were investigated by bioinformatics software and luciferase reporter assay. The in vivo function of TINCR was accessed on survival rate and tumor growth in nude mice. Results We used qRT-PCR to detect the expression of TINCR in laryngeal squamous cell carcinoma (LSCC) tissues and cells and found significantly lower levels in cancer tissues compared with adjacent tissues. Additionally, patients with high TINCR expression had a better prognosis. TINCR overexpression was observed to inhibit the proliferation and invasion of LSCC cells. TINCR was shown to exert its antiproliferation and invasion effects by adsorbing miR-210, which significantly promoted the proliferation and invasion of laryngeal squamous cells. Overexpression of miR-210 was determined to reverse the tumour-suppressive effects of TINCR. BTG2 (anti-proliferation factor 2) was identified as the target gene of miR-210, and BTG2 overexpression inhibited the proliferation and invasion of LSCC cells. BTG2 knockdown relieved the inhibitory effects of TINCR on the proliferation and invasion of LSCC. Finally, TINCR upregulation slowed xenograft tumour growth in nude mice and significantly increased survival compared with control mice. Conclusion The results of this study suggest that TINCR inhibits the proliferation and invasion of LSCC by regulating the miR-210/BTG2 pathway, participates in cell cycle regulation, and may become a target for the treatment of LSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08513-0.
Collapse
Affiliation(s)
- Guoqing He
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China
| | - Rui Pang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Jihua Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Jinliang Jia
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Zhaoming Ding
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Wen Bi
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Jiawei Yu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Lili Chen
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China
| | - Jiewu Zhang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, 150081, China.
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
7
|
Wang J, Zhong P, Hua H. The Clinical Prognostic Value of lncRNA SBF2-AS1 in Cancer Patients: A Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211004915. [PMID: 33906548 PMCID: PMC8107676 DOI: 10.1177/15330338211004915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The mortality and recurrence of patients with cancer is of high prevalence. SET-binding factor 2 (SBF2) antisense RNA1 (lncRNA-SBF2-AS1) is a promising long non-coding RNA. There is increasing evidence that SBF2-AS1 is abnormally expressed in various tumors and is associated with cancer prognosis. However, the identification of the effect of lncRNA SBF2-AS1 in tumors remains necessary. Materials and Methods: Up to November 2, 2020, electronic databases, including PubMed, Cochrane Library, EMBASE, Medline, and Web of Science, were searched. The results were evaluated by pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs). Results: A total of 11 literatures on cancer patients were included for the present meta-analysis. The combined results revealed that high expression of SBF2-AS1 was significantly associated with unfavorable overall survival (OS) (HR = 1.48, 95% CI: 1.34-1.62, P < 0.00001) in a variety of cancers. In additional, the increase in SBF2-AS1 expression was also correlated with tumor size ((larger vs. smaller) OR = 2.34, 95% CI: 1.47-3.70, P = 0.0003), advanced TNM stage ((III/IV vs. I/II) OR = 2.78, 95% CI: 1.75-4.41, P < 0.0001), lymph node metastasis ((Positive vs. Negative) OR = 3.06, 95% CI: 1.93-4.86, P < 0.00001), and histological grade ((poorly vs. well/moderately) OR = 2.58, 95% CI: 1.47-4.52, P = 0.001) in patients with cancer. Furthermore, The Cancer Genome Atlas (TCGA) dataset valuated that SBF2-AS1 was upregulated in a variety of tumors, and predicted the worse prognosis. Conclusions: Our results of this meta-analysis demonstrate that high SBF2-AS1 expression may become a potential target for predicting the prognosis of human cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
8
|
Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M. Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 2021; 66:381-397. [PMID: 32185664 DOI: 10.1007/s10620-020-06200-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/07/2020] [Indexed: 01/17/2023]
Abstract
Approximately 80% of the human genome harbors biochemical marks of active transcription that its majority transcribes to noncoding RNAs, namely long noncoding RNAs (lncRNAs). LncRNAs are heterogeneous RNA transcripts that regulate critical biological processes such as cell survival and death. They involve in the progression of different cancers by affecting transcriptional and post-transcriptional modifications as well as epigenetic control of numerous tumor suppressors and oncogenes. Recent findings show that aberrant expression of lncRNAs is associated with tumor initiation, progression, invasion, and overall survival of patients with gastrointestinal (GI) cancers. Some lncRNAs play as tumor suppressors in all GI cancers, but others play as tumor promoters. However, some other lncRNAs might function as a tumor suppressor in one GI cancer, but as a tumor promoter in another GI cancer type. This fact highlights possible context dependency of the expression patterns and roles of at least some lncRNAs in GI cancer development and progression. Here, we review the functional relation of lncRNAs involved in the development and progression of GI cancer by focusing on their roles as tumor suppressor and tumor promoter genes.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Babak Jahanghiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Damaghi
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, 33612, FL, USA
| |
Collapse
|
9
|
Wang X, Li S, Xiao H, Deng X. Serum lncRNA TINCR Serve as a Novel Biomarker for Predicting the Prognosis in Triple-Negative Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820965574. [PMID: 33084530 PMCID: PMC7785999 DOI: 10.1177/1533033820965574] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Tissue differentiation-inducing non-protein coding RNA (TINCR) has been shown to play a crucial role in pathogenesis of various types of human cancer including breast cancer (BC). The purpose of this study was to determine the potential prognostic value of serum lncRNA TINCR in BC. Methods: Quantitative reverse transcription PCR (qRT-PCR) was performed to detect serum lncRNA TINCR levels in 72 triple-negative BC (TNBC) patients, 105 non-TNBC patients, 60 benign breast disease patients and 86 healthy subjects. Results: The results showed that serum lncRNA TINCR level was significantly increased in BC, especially in TNBC. High circulating lncRNA TINCR was significantly correlated with worse clinicopathological features and clinical outcome of TNBC. Multivariate analysis revealed that serum lncRNA TINCR was an independent prognostic factor for overall survival of TNBC. However, little association was found between serum lncRNA TINCR and the prognosis of non-TNBC. Conclusions: Taken together, our findings demonstrate that serum lncRNA TINCR might be a useful novel and non-invasive biomarker for the prognosis prediction of TNBC.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Xiaojie Wang and Shuang Li contributed equally to this work
| | - Shuang Li
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Xiaojie Wang and Shuang Li contributed equally to this work
| | - Huiyu Xiao
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoqin Deng
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Yan S, Du L, Jiang X, Duan W, Li J, Xie Y, Zhan Y, Zhang S, Wang L, Li S, Wang C. Evaluation of Serum Exosomal lncRNAs as Diagnostic and Prognostic Biomarkers for Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:9753-9763. [PMID: 33116835 PMCID: PMC7548224 DOI: 10.2147/cmar.s250971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Exosomal long non-coding RNAs (lncRNAs) have been recognised as promising stable biomarkers in cancers. The aim of this study was to identify an exosomal lncRNA panel for diagnosis and prognosis of esophageal squamous cell carcinoma (ESCC). Materials and Methods Exosomes were isolated from serum by ExoQuick Solution. To validate the exosomes, exosomal markers and characterization of nanoparticle were performed. Quantitative real-time PCR was used to measure the levels of lncRNAs in exosomes from ESCC patients and healthy subjects. In the training set, exosomal lncRNA profiles from 404 samples were conducted and established new models by multivariate logistic regression. In the validation set, the diagnostic performance of the panel was further validated in 222 additional individuals with a receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox proportional hazards analysis were applied to assess the correlation between lncRNAs and survival rate of ESCC patients. Results A 4-lncRNA panel (UCA1, POU3F3, ESCCAL-1 and PEG10) in exosomes for ESCC diagnosis was developed by logistic regression model. The diagnostic accuracy of panel was evaluated with AUC value of 0.844 and 0.853 for training and validation stage, respectively. The corresponding AUCs for patients with TNM stage I-II and III were 0.820 and 0.935, significantly higher than squamous cell carcinoma antigen (P<0.001), which were 0.652 and 0.642, respectively. Kaplan-Meier analysis indicated that patients with higher level of UCA1 and POU3F3 had lower survival rate (P<0.001). Additionally, POU3F3 might be as an independent prognostic factor for ESCC patients (P=0.004). Conclusion These findings suggested that serum exosomal 4-lncRNA panel has considerable value for ESCC diagnosis, and POU3F3 may serve as a novel and independent prognostic predictor in clinical applications.
Collapse
Affiliation(s)
- Suzhen Yan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiumei Jiang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yujiao Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, The Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
11
|
Xu G, Yang H, Liu M, Niu J, Chen W, Tan X, Sun L. lncRNA TINCR facilities bladder cancer progression via regulating miR‑7 and mTOR. Mol Med Rep 2020; 22:4243-4253. [PMID: 33000269 PMCID: PMC7533511 DOI: 10.3892/mmr.2020.11530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in various human malignancies, but the molecular mechanism of lncRNA TINCR ubiquitin domain containing (TINCR) in bladder cancer remains unclear. The present study found that the expression of TINCR was significantly increased in bladder cancer tissues and cell lines, when compared with that in adjacent normal tissues and normal urinary tract epithelial cell line SV-HUC-1, respectively. Moreover, the high expression of TINCR was associated with tumor metastasis and advanced tumor, node, metastasis stage, as well as reduced overall survival rates of patients with bladder cancer. Further investigation revealed that microRNA (miR)-7 was negatively mediated by TINCR in bladder cancer cells. Silencing of TINCR expression significantly increased miR-7 expression and reduced bladder cancer cell proliferation, migration and invasion, while knockdown of miR-7 expression reversed the inhibitory effects of TINCR downregulation on bladder cancer cells. mTOR was then identified as a target gene of miR-7 in bladder cancer, and it was demonstrated that overexpression of mTOR reversed the inhibitory effects of miR-7 on bladder cancer cells. In conclusion, this study suggests that TINCR/miR-7/mTOR signaling may be a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Guoying Xu
- Department of Urology Surgery, Shengli Hospital of Shengli Petroleum Administration, Dongying, Shandong 257055, P.R. China
| | - Honglan Yang
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Meichun Liu
- Clinical Laboratory, Shengli Hospital of Shengli Petroleum Administration, Dongying, Shandong 257055, P.R. China
| | - Jintao Niu
- Department of Urology Surgery, Shengli Hospital of Shengli Petroleum Administration, Dongying, Shandong 257055, P.R. China
| | - Weidong Chen
- Shengli Hospital of Shengli Petroleum Administration, Dongying, Shandong 257055, P.R. China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Li Sun
- Shengli Hospital of Shengli Petroleum Administration, Dongying, Shandong 257055, P.R. China
| |
Collapse
|
12
|
Wang X, Zhou L, Zhang H, Ou H, Long W, Liu X. Upregulation of cervical carcinoma expressed PCNA regulatory long non-coding RNA promotes esophageal squamous cell carcinoma progression. Oncol Lett 2020; 20:142. [PMID: 32934710 PMCID: PMC7471740 DOI: 10.3892/ol.2020.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/28/2020] [Indexed: 12/03/2022] Open
Abstract
Cervical carcinoma expressed PCNA regulatory long non-coding (lnc)RNA (CCEPR) has recently been reported to play oncogenic roles in some common types of human cancer. However, the clinical significance of CCEPR mRNA expression levels in esophageal squamous cell carcinoma (ESCC) and the exact function of CCEPR in regulating the malignant phenotypes of ESCC cells have not been previously investigated. In the present study, CCEPR mRNA expression level was upregulated in ESCC tissues and cell lines, and overexpression of CCEPR was associated with advanced TNM stage, lymph node metastasis, and poor prognosis in ESCC. In vitro experiments showed that silencing CCEPR mRNA expression levels significantly suppressed the proliferation, migration, and invasion of ESCC cells, while inducing ESCC cell apoptosis. Furthermore, inhibition of CCEPR decreased the protein expression levels of matrix metalloproteinase (MMP)2 and MMP9 and inhibited epithelial-mesenchymal transition in ESCC cells. In conclusion, the results showed that CCEPR plays an oncogenic role in ESCC and suggests that CCEPR could be used as a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Liangfen Zhou
- Department of Neonatology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Huiyun Zhang
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Hui Ou
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Wenxing Long
- Department of Invasive Technology, Affiliated Hospital of Xiangnan College, Chenzhou, Hunan 423000, P.R. China
| | - Xiaobao Liu
- Department of Oncology, Second People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
13
|
Asgharzadeh S, Tafvizi F, Chaleshi V, Iravani S. Lack of association between LincRNA-Pou3f gene expression and clinicopathological features in gastric cancer tissue. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Ghafouri-Fard S, Dashti S, Taheri M, Omrani MD. TINCR: An lncRNA with dual functions in the carcinogenesis process. Noncoding RNA Res 2020; 5:109-115. [PMID: 32695943 PMCID: PMC7358216 DOI: 10.1016/j.ncrna.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have prominent roles in the pathogenesis of human cancers. Several studies have shown oncogenic or tumor suppressor roles of lncRNAs in different human tissues. Thus, these transcripts have been regarded as putative targets in treatment of cancer. The lncRNA terminal differentiation-induced non-coding RNA (TINCR) has an especial position in this regard, as it exerts different opposite roles in the pathogenesis of different human cancers. While it is up-regulated in gastric, esophageal, bladder and breast cancer; it is down-regulated in glioma, retinoblastoma and prostate cancer. Notably, data regarding expression profile of this lncRNA in a number of human cancers such as colon cancer, squamous cell carcinoma, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are controversial. Expression level of this lncRNA has been associated with clinical outcome in patients with gastric cancer, colorectal cancer, NSCLC and head and neck squamous cell carcinoma. Moreover, Kaplan-Meier analyses have shown correlation between expression levels of TINCR and patients survival in patients with lung cancer and HCC. A number of cellular pathways such as Wnt/β-catenin, ERK1/2‐SP3 and MAPK signaling pathways have been identified as targets of this lncRNA in different cancers. Moreover, the rs8113645, rs2288947 and rs8105637 within this lncRNA have been associated with risk of gastric and colorectal cancer. In conclusion, although the role of TINCR in the carcinogenesis is essential, based on the conflicting data regarding the direction of effect of this lncRNA, therapeutic targeting of this lncRNA is a complicated issue which should be considered in a tissue-specific or even individualized manner.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Genomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci 2020; 257:118035. [PMID: 32622950 DOI: 10.1016/j.lfs.2020.118035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Despite the recent scientific advances made in cancer diagnostics and therapeutics, cancer still remains the second leading cause of death worldwide. Thus, there is a need to identify new potential biomarkers/molecular targets to improve the diagnosis and treatment of cancer patients. In this regard, long non-coding RNAs (lncRNAs), a type of non-coding RNA molecule, have been found to play important roles in diverse biological processes, including tumorigenesis, and may provide new biomarkers and/or molecular targets for the improved detection of treatment of cancer. For example, one lncRNA, tissue differentiation-inducing non-protein coding RNA (TINCR) has been found to be significantly dysregulated in many cancers, and has an impact on tumor development and progression through targeting pivotal molecules in cancer-associated signaling pathways. Hence, based on recent discoveries, herein, we discuss the regulatory functions and the underlying mechanisms of how TINCR regulates signaling pathways attributed to cancer hallmarks associated with the pathogenesis of various human cancers. We also highlight studies assessing its potential clinical utility as a biomarker/target for early detection, cancer risk stratification, and personalized cancer therapies.
Collapse
|
16
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
17
|
Zhang P, Dong Q, Zhu H, Li S, Shi L, Chen X. Long non-coding antisense RNA GAS6-AS1 supports gastric cancer progression via increasing GAS6 expression. Gene 2019; 696:1-9. [PMID: 30735718 DOI: 10.1016/j.gene.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE As one broader class of non-coding RNAs (lncRNAs), non-coding antisense (AS) transcripts are functionally characterized to play pivotal roles in various pathophysiological processes, including tumor biology. METHODS In this study, the exact biological functions and regulation mechanisms of GAS6-AS1 in gastric cancer (GC) was examined. RESULTS The expression of GAS6-AS1 was markedly upregulated in GC tissues and is associated with advanced stage (III + IV) of GC patients. Gain-of-function and loss-of-function experiments showed that GAS6-AS1 promoted cell proliferation, migration, invasion ability in vitro and xenograft tumor growth in vivo by promoting entry into S-phase. The mechanistic investigations showed that GAS6-AS1 can control the expression of its cognate sense gene GAS6 at the transcriptional or translational levels by forming a RNA-RNA duplex, consequently inducing an increase of AXL level and driveling AXL signaling pathway activation. CONCLUSIONS Taken together, our studies indicate that GAS6-AS1 significantly driving the aggressive phenotype in GC through activating its cognate sense gene GAS6, and provides a more complete understanding of GAS6-AS1 as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Peichen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Qiantong Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Hua Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lingyan Shi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China.
| | - Xiangjian Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China.
| |
Collapse
|
18
|
Oskooei VK, Ghafouri-Fard S. Are long non-coding RNAs involved in the interaction circuit between estrogen receptor and vitamin D receptor? Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
19
|
Li J, Gao C, Liu C, Zhou C, Ma X, Li H, Li J, Wang X, Qi L, Yao Y, Zhang X, Zhuang J, Liu L, Wang K, Sun C. Four lncRNAs associated with breast cancer prognosis identified by coexpression network analysis. J Cell Physiol 2019; 234:14019-14030. [PMID: 30618123 DOI: 10.1002/jcp.28089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023]
Abstract
Previous studies on long noncoding RNA (lncRNA) have made breakthroughs in the treatment of several tumors, and these findings have brought attention to the lncRNA signature of breast cancer. Increased understanding of genomic architecture and achievement of innovative therapeutic strategies has prompted creation of a novel oncological model for the treatment of solid cancers. In this study, we systematically analyzed the transcriptome of breast cancer tissues to gain more in-depth knowledge of tumor biology. Gene coexpression relationships were studied in 206 samples from The Cancer Genome Atlas database, and nine coexpression modules were identified. After screening and analysis, we identified four important prognosis-related lncRNAs (HOTAIR, SNHG16, HCP5, and TINCR), and constructed a prognostic model, one (HCP5) of which has not previously been identified in the context of breast cancer. Importantly, an understanding of prognosis facilitates precise disease risk assessment and advances the selection of strategies for risk-adaptive management. These findings broaden the landscape of carcinogenic lncRNAs in breast cancer, providing insights into the biological significance and clinical application of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, P. R. China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P. R. China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Jia Li
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Xue Wang
- College of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Lingyu Qi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Yan Yao
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Xiaoming Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, P. R. China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P. R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, P. R. China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P. R. China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, P. R. China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P. R. China
| |
Collapse
|
20
|
Fanelli GN, Gasparini P, Coati I, Cui R, Pakula H, Chowdhury B, Valeri N, Loupakis F, Kupcinskas J, Cappellesso R, Fassan M. LONG-NONCODING RNAs in gastroesophageal cancers. Noncoding RNA Res 2018; 3:195-212. [PMID: 30533569 PMCID: PMC6257886 DOI: 10.1016/j.ncrna.2018.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Despite continuing improvements in multimodal therapies, gastro-esophageal malignances remain widely prevalent in the population and is characterized by poor overall and disease-free survival rates. Due to the lack of understanding about the pathogenesis and absence of reliable markers, gastro-esophageal cancers are associated with delayed diagnosis. The increasing understanding about cancer's molecular landscape in the recent years, offers the possibility of identifying 'targetable' molecular events and in particular facilitates novel treatment strategies and development of biomarkers for early stage diagnosis. At least 98% of our genome is actively transcribed into non-coding RNAs encompassing long non-coding RNAs (lncRNAs) constituted of transcripts longer than 200 nucleotides with no protein-coding capacity. Many studies have demonstrated that lncRNAs are functional genomic elements playing pivotal roles in main oncogenic processes. LncRNA can act at multiple levels developing a complex molecular network that can modulate directly or indirectly the expression of genes involved in tumorigenesis. In this review, we focus on lncRNAs as emerging players in gastro-esophageal carcinogenesis and critically assess their potential as reliable noninvasive biomarkers and in next generation targeted therapies.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| | - Ri Cui
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hubert Pakula
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Basudev Chowdhury
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Fotios Loupakis
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, PD, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rocco Cappellesso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| |
Collapse
|
21
|
Dong L, Ding H, Li Y, Xue D, Liu Y. LncRNA TINCR is associated with clinical progression and serves as tumor suppressive role in prostate cancer. Cancer Manag Res 2018; 10:2799-2807. [PMID: 30154672 PMCID: PMC6108330 DOI: 10.2147/cmar.s170526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction Terminal differentiation-induced non-coding RNA (TINCR) has been suggested to have aberrant expression in multiple human cancers, and functions as tumor suppressor or promoter in various types of human tumors depending on the specific cancer types. The expression status and biological function of TINCR in prostate cancer is still unknown. Materials and methods In our study, we detected TINCR expression in prostate cancer tissue samples and cell lines, and analyzed the association between TINCR expression and clinical parameters in 160 prostate cancer patients. Moreover, we conducted gain-of-function and loss-of-function studies in prostate cancer cell to explore the biological function and molecular mechanism of TINCR. Results In our results, low-expression TINCR was observed in prostate cancer, and correlated with advanced clinical T stage, lymph node involvement, distant metastasis, high Gleason score and poor prognosis in prostate cancer patients. Moreover, levels of TINCR expression were negatively associated with TRIP13 mRNA and protein expressions in prostate cancer tissues, and negatively regulated the TRIP13 mRNA and protein expressions in prostate cancer cell lines. TINCR inhibits prostate cancer cell proliferation, migration and invasion via suppressing TRIP13 expression. Conclusion TINCR plays a tumor suppressive role in regulating prostate cancer cell proliferation, migration and invasion through modulating TRIP13 expression.
Collapse
Affiliation(s)
- Liming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Liaoning 110000, Shenyang, China;
| | - Honglin Ding
- Department of Urology, The Affiliated Hospital of Chifeng Medical College, Chifeng 024000, Inner Mongolia, China
| | - Yanpei Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Liaoning 110000, Shenyang, China;
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Liaoning 110000, Shenyang, China;
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Liaoning 110000, Shenyang, China;
| |
Collapse
|
22
|
Burris HH, Just AC, Haviland MJ, Neo DT, Baccarelli AA, Dereix AE, Brennan KJ, Rodosthenous RS, Ralston SJ, Hecht JL, Hacker MR. Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics 2018; 13:742-750. [PMID: 30045669 DOI: 10.1080/15592294.2018.1503490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infants born preterm are at increased risk of multiple morbidities and mortality. Why some women deliver preterm remains poorly understood. Prior studies have shown that cervical microRNA expression and DNA methylation are associated with the length of gestation. However, no study has examined the role of long noncoding RNAs (lncRNAs) in the cervix during pregnancy. To determine whether expression of lncRNAs is associated with length of gestation at delivery, we analyzed RNA from cervical swabs obtained from 78 women during pregnancy (mean 15.5, SD 5.0, weeks of gestation) who were participating in the Spontaneous Prematurity and Epigenetics of the Cervix (SPEC) Study in Boston, MA, USA. We used a PCR-based platform and found that 9 lncRNAs were expressed in at least 50% of the participants. Of these, a doubling of the expression of TUG1, TINCR, and FALEC was associated with shorter lengths of gestation at delivery [2.8 (95% CI: 0.31, 5.2); 3.3 (0.22, 6.3); and 4.5 (7.3, 1.6) days shorter respectively]. Of the lncRNAs analyzed, none was statistically associated with preterm birth, but expression of FALEC was 2.6-fold higher in women who delivered preterm vs. term (P = 0.051). These findings demonstrate that lncRNAs can be measured in cervical samples obtained during pregnancy and are associated with subsequent length of gestation at delivery. Further, this study supports future work to replicate these findings in other cohorts and perform mechanistic studies to determine the role of lncRNAs in the cervix during pregnancy.
Collapse
Affiliation(s)
- Heather H Burris
- a Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics , Harvard Medical School , Boston , MA , USA.,b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,c Department of Environmental Health , Harvard TH Chan School of Public Health , Boston , MA , USA.,d Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Allan C Just
- e Department of Environmental Medicine & Public Health , Icahn School of Medicine at Mount Sinai , NY , NY , USA
| | - Miriam J Haviland
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Dayna T Neo
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Alexandra E Dereix
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Kasey J Brennan
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Rodosthenis S Rodosthenous
- g Cardiology Division, Department of Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Steven J Ralston
- h Department of Obstetrics and Gynecology , Pennsylvania Hospital, University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Jonathan L Hecht
- i Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Michele R Hacker
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,j Department of Epidemiology , Harvard TH Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
23
|
Li J, Cui Z, Li H, Lv X, Gao M, Yang Z, Bi Y, Zhang Z, Wang S, Zhou B, Yin Z. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: a review and meta-analysis. Cancer Cell Int 2018; 18:109. [PMID: 30093838 PMCID: PMC6080354 DOI: 10.1186/s12935-018-0606-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aberrant regulation of MALAT1 has been indicated to be involved in various carcinogenic pathways contributing to the tumourigenesis and progression of cancers. The current meta-analysis summarized the research advances of MALAT1 functions and analyzed its prognostic value among multiple types of cancers. Methods Eligible studies were identified through retrieving the PubMed, Web of Science, and CNKI databases, up to Mar 1, 2018. 28 studies of 5436 patients and 36 studies of 3325 patients were enrolled in the meta-analysis to evaluate the association of MALAT1 expression with survival outcomes and clinical parameters. Results The results demonstrated that over-expression of MALAT1 may predict lymph node metastasis (pooled OR = 2.335, 95% CI 1.606–3.395, P = 0.000) and distant metastasis (pooled OR = 2.456, 95% CI 1.407–4.286, P = 0.002). Moreover, MALAT1 was also related with tumour size (pooled OR = 1.875, 95% CI 1.257–2.795, P = 0.002) and TNM stage (pooled OR = 2.034, 95% CI 1.111–3.724, P = 0.021). Additionally, elevated MALAT1 expression could predict poor OS (pooled HR = 2.298, 95% CI 1.953–2.704, P = 0.000), DFS (pooled HR = 2.036, 95% CI 1.240–3.342, P = 0.005), RFS (pooled HR = 2.491, 95% CI 1.505–4.123, P = 0.000), DSS (pooled HR = 2.098, 95% CI 1.372–3.211, P = 0.001) and PFS (pooled HR = 1.842, 95% CI 1.138–2.983, P = 0.013) in multivariate model. Importantly, subgroup analyses disclosed that increased MALAT1 expression had a poor OS among different cancer types (Estrogen-dependent cancer: pooled HR = 2.656, 95% CI 1.560–4.523; urological cancer: pooled HR = 1.952, 95% CI 1.189–3.204; glioma: pooled HR = 2.315, 95% CI 1.643–3.263; digestive cancer: pooled HR = 2.451, 95% CI 1.862–3.227). Conclusions The present findings demonstrated that MALAT1 may be a novel biomarker for predicting survival outcome, lymph node metastasis and distant metastasis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0606-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhigang Cui
- 3School of Nursing, China Medical University, Shenyang, 110122 China
| | - Hang Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Xiaoting Lv
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Min Gao
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zitai Yang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Yanhong Bi
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Ziwei Zhang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Shengli Wang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Baosen Zhou
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhihua Yin
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| |
Collapse
|
24
|
Chen X, Cai S, Li B, Zhang X, Li W, Linag H, Cao X. Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis. Exp Ther Med 2018; 16:1121-1130. [PMID: 30112053 PMCID: PMC6090437 DOI: 10.3892/etm.2018.6316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to identify the differentially expressed genes (DEGs) in esophageal squamous-cellcarcinoma (ESCC) and provide potential therapeutic targets. The microarray dataset GSE20347 was downloaded from the Gene Expression Omnibus (GEO) database, and included 17 tissue samples and 13 normal adjacent tissue samples from patients with ESCC. A total of 22,277 DEGs were identified. A heat map for the DEGs was constructed with the Morpheus online tool and the top 200 genes (100 upregulated and 100 downregulated) were selected for further bioinformatics analysis, including analysis of gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, protein-protein interaction networks and Spearman's correlation tests. The results of the GO analysis indicated that the upregulated DEGs were most significantly enriched in membrane-bounded vesicles in the cellular component (CC) category, but were not significantly enriched in any GO terms of the categories biological process (BP) or molecular function (MF); furthermore, the downregulated DEGs were most significantly enriched in regulation of DNA metabolic processes, nucleotide binding and chromosomes in the categories BP, MF and CC, respectively. The KEGG analysis indicated that the downregulated DEGs were enriched in the regulation of cell cycle pathways. The top 10 hub proteins in the protein-protein interaction network were cyclin-dependent kinase 4, budding uninhibited by benzimidazoles 1, cyclin B2, heat shock protein 90AA1, aurora kinase A, H2A histone family member Z, replication factor C subunit 4, and minichromosome maintenance complex component 2, −4 and −7. These proteins are mainly involved in regulating tumor progression. The genes in the four top modules were mainly implicated in regulating cell cycle pathways. Secreted Ly-6/uPAR-related protein (SLURP) was the hub gene, and SLURP and its interacting genes were most enriched in the chromosomal part in the CC category, organelle organization in the BP category and protein binding in the MF category, and were involved in pathways including DNA replication, cell cycle and P53 signaling. The expression of SLURP-1 in fifteen patients with esophageal carcinoma was detected using quantitative polymerase chain reaction analysis, and the results indicated that SLURP-1 expression was significantly decreased in the tumor samples relative to that in normal adjacent tissues. These results suggest that several hub proteins and the hub gene SLURP-1 may serve as potential therapeutic targets, and that gene dysfunction may be involved in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Sina Cai
- Department of Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Baoxia Li
- State Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaona Zhang
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wenhui Li
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Henglun Linag
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
25
|
Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov 2018; 4:50. [PMID: 29736267 PMCID: PMC5919979 DOI: 10.1038/s41420-018-0051-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Studies of long non-coding RNAs (lncRNAs) have been prevalent in the field of non-coding RNA regulation in recent years. LncRNAs exert crucial effects on malignant cell processes in the gastrointestinal system, including proliferation. Aberrant lncRNA expression, through both oncogenes and tumor suppressor genes, is instrumental to tumor cell proliferation. Here, we summarize the different molecular mechanisms and relevant signaling pathways through which multifarious lncRNAs regulate cell proliferation and we show that lncRNAs are potential biomarkers for gastrointestinal cancers.
Collapse
|
26
|
Liu Y, Du Y, Hu X, Zhao L, Xia W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer 2018; 18:367. [PMID: 29614984 PMCID: PMC5883880 DOI: 10.1186/s12885-018-4255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background Assembling evidences suggested that aberrant expression of tissue differentiation-inducing non-protein coding RNA (TINCR) intimately associated with variety of human cancer. However, the expression pattern and involvement of TINCR in breast cancer has not been fully investigated. Here we set out to analyze expression of TINCR in breast cancer and elucidate its mechanistic involvement in tumor incidence and progression. Methods The expression of TINCR was determined by q-PCR. SP1 binding sites were analyzed by ChIP-qPCR. The relative transcription activity was measured with luciferase reporter assay. Cell viability was measured with CCK-8 method. Clonogenic capacity was evaluated by soft agar assay. Cell apoptosis was analyzed by Annexin V/7-AAD staining. The migration and invasion were determined by trans-well assay and wound healing. The tumor growth in vivo was evaluated in xenograft mice model. Protein expression was quantified by immunoblotting. Results TINCR was aberrantly up-regulated by SP1, which in turn stimulated cell proliferation, anchorage-independent growth and suppressed cell apoptosis in breast cancer. TINCR silencing significantly suppressed migration and invasion in vitro and xenograft tumor growth in vivo. Mechanistically, TINCR modulated KLF4 expression via competing with miR-7, which consequently contributed to its oncogenic potential. MiR-7 inhibition severely compromised TINCR silencing-elicited tumor repressive effects. Conclusion Our data uncovered a crucial role of TINCR-miR-7-KLF4 axis in human breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yaying Du
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Xiaopeng Hu
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Lu Zhao
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wenfei Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
27
|
Liu X, Ma J, Xu F, Li L. TINCR suppresses proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer. Biomed Pharmacother 2018; 99:9-17. [PMID: 29324317 DOI: 10.1016/j.biopha.2018.01.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) play critical roles in multiple biological processes implicated in the development and progression of cancers. Terminal differentiation-induced lncRNA (TINCR) has been demonstrated to be associated with the carcinogenesis of several cancers. However, little is known about the function and mechanism of TINCR in lung cancer. METHODS qRT-PCR was performed to measure the expression of TINCR, miR-544a or FBXW7 mRNA in lung cancer tissues or cells. FBXW7 protein level was detected via western blot analysis. Cell Counting Kit-8 (CCK-8) and transwell invasion analysis were used to assess the proliferative and invasive ability of lung cancer cells. Bioinformatic softwares, luciferase reporter assay, and RNA immunoprecipitation (RIP) were employed to explore the relationship between TINCR, miR-544a and FBXW7. RESULTS TINCR expression was downregulated while miR-544a expression was upregulated in lung cancer tissues and cells. TINCR overexpression suppressed proliferation and invasion in lung cancer cells. Moreover, TINCR was confirmed as a molecular sponge of miR-544a. We further validated that miR-544a facilitated proliferation and invasion, and miR-544a could reverse TINCR-mediated anti-proliferation and anti-invasion effect in lung cancer cells. TINCR acted as a competing endogenous RNA (ceRNA) to sequester miR-544a from its target gene FBXW7. Finally, FBXW7 suppressed proliferation and invasion, and FBXW7 knockdown abolished the inhibition of TINCR on proliferation and invasion in lung cancer cells. CONCLUSION TINCR suppressed proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer, indicating that it might be a potential target for the therapy of lung cancer.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Jing Ma
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Feng Xu
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Li Li
- College of Nursing and Health Care, Henan University, Jinming Campus, Kaifeng, 475004, China.
| |
Collapse
|
28
|
Xu S, Kong D, Chen Q, Ping Y, Pang D. Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer 2017; 16:129. [PMID: 28738804 PMCID: PMC5525255 DOI: 10.1186/s12943-017-0696-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background Few long noncoding RNAs (lncRNAs) that act as oncogenic genes in breast cancer have been identified. Methods Oncogenic lncRNAs associated with tumourigenesis and worse survival outcomes were examined and validated in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), respectively. Then, the potential biological functions and expression regulation of these lncRNAs were studied via bioinformatics and genome data analysis. Moreover, progressive breast cancer subtype-specific lncRNAs were investigated via high-throughput sequencing in our cohort and TCGA validation. To elucidate the mechanisms of the regulation of these lncRNAs, genomic alterations from the TCGA, Broad, Sanger and BCCRC data, as well as epigenetic modifications from GEO data, were then applied and examined to meet this objective. Finally, cell proliferation assays, flow cytometry analyses and TUNEL assays were applied to validate the oncogenic roles of these lncRNAs in vitro. Results A cluster of oncogenic lncRNAs that was upregulated in breast cancer tissue and was associated with worse survival outcomes was identified. These oncogenic lncRNAs are involved in regulating immune system activation and the TGF-beta and Jak-STAT signalling pathways. Moreover, TINCR, LINC00511, and PPP1R26-AS1 were identified as subtype-specific lncRNAs associated with HER-2, triple-negative and luminal B subtypes of breast cancer, respectively. The up-regulation of these oncogenic lncRNAs is mainly caused by gene amplification in the genome in breast cancer and other solid tumours. Finally, the knockdown of TINCR, DSCAM-AS1 or HOTAIR inhibited breast cancer cell proliferation, increased apoptosis and inhibited cell cycle progression in vitro. Conclusions These findings enhance the landscape of known oncogenic lncRNAs in breast cancer and provide insights into their roles. This understanding may potentially aid in the comprehensive management of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Dejia Kong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qianlin Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
29
|
Wang S, Fan W, Wan B, Tu M, Jin F, Liu F, Xu H, Han P. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis. PLoS One 2017; 12:e0172498. [PMID: 28225791 PMCID: PMC5321451 DOI: 10.1371/journal.pone.0172498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
The incidence of melanoma, the most aggressive and life-threatening form of skin cancer, has significantly risen over recent decades. Therefore, it is essential to identify the mechanisms that underlie melanoma tumorigenesis and metastasis and to explore novel and effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly expressed long noncoding RNAs (lncRNAs) have vital functions in multiple cancers. However, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this study, we investigated lncRNA and messenger RNA (mRNA) expression profiles in primary melanomas, metastatic melanomas and normal skin samples from the Gene Expression Omnibus database. We used GSE15605 as the training set (n = 74) and GSE7553 as the validation set (n = 58). In three comparisons (primary melanoma versus normal skin, metastatic melanoma versus normal skin, and metastatic melanoma versus primary melanoma), 178, 295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respectively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses to examine the differentially expressed mRNAs, and potential core lncRNAs were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis. A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated with decreased survival of patients with melanoma. To the best of our knowledge, this study is the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumorigenesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus (GEO) microarray dataset. These findings reveal potential roles for lncRNAs during melanoma tumorigenesis and metastasis and provide a rich candidate reservoir for future studies.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wenliang Fan
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bing Wan
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mengqi Tu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng Jin
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Radiology, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People’s Republic of China
| | - Fang Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- * E-mail: (PH); (HX)
| | - Ping Han
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- * E-mail: (PH); (HX)
| |
Collapse
|
30
|
Wang R, Du L, Yang X, Jiang X, Duan W, Yan S, Xie Y, Zhu Y, Wang Q, Wang L, Yang Y, Wang C. Identification of long noncoding RNAs as potential novel diagnosis and prognosis biomarkers in colorectal cancer. J Cancer Res Clin Oncol 2016; 142:2291-301. [PMID: 27591862 DOI: 10.1007/s00432-016-2238-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is prevalent worldwide, and improvements in timely and effective diagnosis are imperatively needed. We aimed to identify potential long noncoding RNA (lncRNA) biomarkers for CRC diagnosis along with prognosis prediction. METHODS LncRNA expression profiles were studied by microarray in paired tumor and normal tissues from six patients with CRC. The expression levels of candidate lncRNAs were analyzed in 80 pairs of tissues and two independent cohorts of serum samples. Receiver-operating characteristic (ROC) curves were employed to evaluate the performance of the lncRNAs identified. The correlation between lncRNAs and disease-specific survival rate of CRC patients was assessed to explore prognostic potential. RESULTS Four lncRNAs (BANCR, NR_026817, NR_029373, and NR_034119) were identified to be significantly dysregulated in both tissue and serum samples with consistent pattern, and a panel was established based on this result. The performance of the 4-lncRNA panel was measured with an area under the ROC curve (AUC) of 0.881. The corresponding AUCs of the panel for patients with TNM stageI, II and III were 0.774, 0.844 and 0.949, respectively, significantly higher than that of CEA. Kaplan-Meier analysis showed that patients with low levels of NR_029373 and NR_034119 had significantly lower disease-specific survival rate (p = 0.013 and 0.044, respectively). Multivariate Cox analysis demonstrated that NR_029373 and NR_034119 were both independently associated with disease-specific survival rate (p = 0.013 and 0.038, respectively). CONCLUSIONS Our study established a distinctive 4-lncRNA panel with considerable diagnostic value and identified NR_029373 and NR_034119 as potential biomarkers for CRC prognosis prediction.
Collapse
Affiliation(s)
- Rui Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Xiumei Jiang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Weili Duan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Suzhen Yan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Yujiao Xie
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Yuntao Zhu
- Department of Clinical Laboratory, Jinxiang County People's Hospital, Jining, 272000, Shandong Province, China
| | - Qingliang Wang
- Department of Medical Affairs Management, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
31
|
Cao D, Ding Q, Yu W, Gao M, Wang Y. Long noncoding RNA SPRY4-IT1 promotes malignant development of colorectal cancer by targeting epithelial-mesenchymal transition. Onco Targets Ther 2016; 9:5417-25. [PMID: 27621655 PMCID: PMC5012848 DOI: 10.2147/ott.s111794] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clinical significance and biological functions of long noncoding RNA SPRY4 intronic transcript 1 (SPRY4-IT1) in colorectal cancer (CRC) remain largely unclear. Herein, we are the first to report that the SPRY4-IT1 was significantly upregulated in CRC tissues, serum, and cells. Higher SPRY4-IT1 expression was markedly associated with advanced Tumor Node Metastasis (TNM) stage in a cohort of 84 CRC patients. Multivariate analyses indicated that SPRY4-IT1 expression could be useful as an independent predictor for overall survival. Further in vitro experiments revealed that knockdown of SPRY4-IT1 inhibited the proliferation, migration, and invasion of CRC cells and induced cell cycle arrestment. Moreover, we confirmed that the expression of epithelial–mesenchymal transition-related genes was modulated through alteration of SPRY4-IT1 expression. These results suggest that SPRY4-IT1, as an oncogenic regulator, may serve as a candidate prognostic marker and potential target for CRC therapies.
Collapse
Affiliation(s)
- Dong Cao
- Department of General Surgery, The People's Hospital of Putuo, Zhoushan
| | - Qiong Ding
- Department of General Surgery, The People's Hospital of Putuo, Zhoushan
| | - Wubin Yu
- Department of General Surgery, The People's Hospital of Putuo, Zhoushan
| | - Ming Gao
- Department of General Surgery, The People's Hospital of Putuo, Zhoushan
| | - Yilian Wang
- Department of Cardiology, The Second People's Hospital of Lianyungang, Xinpu, People's Republic of China
| |
Collapse
|