1
|
Tang Y, Zhou Y, Ren J, Wang Y, Li X, Qi M, Yang Y, Zhu C, Wang C, Ma Y, Tang Z, Yu G. TRPV4-β-catenin axis is a novel therapeutic target for dry skin-induced chronic itch. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167491. [PMID: 39218273 DOI: 10.1016/j.bbadis.2024.167491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dry skin induced chronic pruritus is an increasingly common and debilitating problem, especially in the elderly. Although keratinocytes play important roles in innate and adaptive immunity and keratinocyte proliferation is a key feature of dry skin induced chronic pruritus, the exact contribution of keratinocytes to the pathogenesis of dry skin induced chronic pruritus is poorly understood. In this study, we generated the acetone-ether-water induced dry skin model in mice and found that epidermal hyperplasia induced by this model is partly dependent on the β-catenin signaling pathway. XAV939, an antagonist of β-catenin signaling pathway, inhibited epidermal hyperplasia in dry skin model mice. Importantly, dry skin induced chronic pruritus also dramatically reduced in XAV939 treated mice. Moreover, acetone-ether-water treatment-induced epidermal hyperplasia and chronic itch were decreased in Trpv4-/- mice. In vitro, XAV939 inhibited hypo-osmotic stress induced proliferation of HaCaT cells, and hypo-osmotic stress induced proliferation of in HaCaT cells and primary cultured keratinocytes were also significantly reduced by blocking TRPV4 function. Finally, thymic stromal lymphopoietin release was examined both in vivo and in vitro, which was significantly inhibited by XAV939 treatment and Trpv4 deficiency, and anti-TSLP antibody treatment significantly decreased AEW-induced scratching behavior. Overall, our study revealed a unique ability of TRPV4 expressing keratinocytes in the skin, which critically mediated dry skin induced epidermal hyperplasia and chronic pruritus, thus provided novel insights into the development of therapies for chronic pruritus in the elderly.
Collapse
Affiliation(s)
- Ye Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Zhou
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jiahui Ren
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yin Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mingxin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan Yang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chan Zhu
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Changming Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxiang Ma
- School of Life Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Zongxiang Tang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Luo L, Guo Y, Chen L, Zhu J, Li C. Crosstalk between cholesterol metabolism and psoriatic inflammation. Front Immunol 2023; 14:1124786. [PMID: 37234169 PMCID: PMC10206135 DOI: 10.3389/fimmu.2023.1124786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Psoriasis is a chronic autoinflammatory skin disease associated with multiple comorbidities, with a prevalence ranging from 2 to 3% in the general population. Decades of preclinical and clinical studies have revealed that alterations in cholesterol and lipid metabolism are strongly associated with psoriasis. Cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-17), which are important in the pathogenesis of psoriasis, have been shown to affect cholesterol and lipid metabolism. Cholesterol metabolites and metabolic enzymes, on the other hand, influence not only the biofunction of keratinocytes (a primary type of cell in the epidermis) in psoriasis, but also the immune response and inflammation. However, the relationship between cholesterol metabolism and psoriasis has not been thoroughly reviewed. This review mainly focuses on cholesterol metabolism disturbances in psoriasis and their crosstalk with psoriatic inflammation.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lihao Chen
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
4
|
Maronese CA, Genovese G, Genovese C, Marzano AV. Refractory disseminated superficial actinic porokeratosis effectively treated with cholesterol/lovastatin cream: A case report. Dermatol Ther 2020; 34:e14583. [PMID: 33236469 DOI: 10.1111/dth.14583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | | | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|