1
|
Scicolone R, Vacca S, Pisu F, Benson JC, Nardi V, Lanzino G, Suri JS, Saba L. Radiomics and artificial intelligence: General notions and applications in the carotid vulnerable plaque. Eur J Radiol 2024; 176:111497. [PMID: 38749095 DOI: 10.1016/j.ejrad.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 06/17/2024]
Abstract
Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary tools for the quantitative analysis of medical imaging data. This integrated approach holds promise not only in refining medical imaging data analysis but also in optimizing the utilization of radiologists' expertise. By automating time consuming tasks, AI allows radiologists to focus on more pertinent responsibilities. Simultaneously, the capacity of AI in radiomics to extract nuanced patterns from raw data enhances the exploration of carotid atherosclerosis, advancing efforts in terms of (1) early detection and diagnosis, (2) risk stratification and predictive modeling, (3) improving workflow efficiency, and (4) contributing to advancements in research. This review provides an overview of general concepts related to radiomics and AI, along with their application in the field of carotid vulnerable plaque. It also offers insights into various research studies conducted on this topic across different imaging techniques.
Collapse
Affiliation(s)
- Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy.
| |
Collapse
|
2
|
Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, Johri AM, Kalra MS, Suri JS. Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification. Diagnostics (Basel) 2021; 11:2109. [PMID: 34829456 PMCID: PMC8622690 DOI: 10.3390/diagnostics11112109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose: Only 1-2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches-a class of Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i-ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv-v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 (p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.
Collapse
Affiliation(s)
- Skandha S. Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad 501401, TS, India; (S.S.S.); (V.K.K.)
- CSE Department, Bennett University, Greater Noida 203206, UP, India;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 1700, Cyprus;
| | - Suneet K. Gupta
- CSE Department, Bennett University, Greater Noida 203206, UP, India;
| | - Vijaya K. Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad 501401, TS, India; (S.S.S.); (V.K.K.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | | | - Amer M. Johri
- Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep S. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA 95661, USA
| |
Collapse
|
3
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India.,CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
4
|
Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications. Diagnostics (Basel) 2021; 11:diagnostics11030551. [PMID: 33808677 PMCID: PMC8003459 DOI: 10.3390/diagnostics11030551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.
Collapse
|
5
|
Fernandes e Fernandes J, Mendes Pedro L, Gonçalves I. The conundrum of asymptomatic carotid stenosis-determinants of decision and evidence. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1279. [PMID: 33178811 PMCID: PMC7607137 DOI: 10.21037/atm-2020-cass-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 01/27/2023]
Abstract
Management of asymptomatic carotid disease continues to challenge medical practice and present evidence is often conflicting. Stroke is a significant burden in Public Health and 11% to 15% appear as first neurologic event associated with asymptomatic carotid stenosis. Randomized trials provided support for Guidelines and Recommendations to intervene on asymptomatic stenosis, but at a known cost of a high number of unnecessary operations. Conflicting evidence from natural history studies and the widespread use of proper medical management including risk factors control, lowering-lipid drugs and strict control of arterial hypertension have reduced the incidence of strokes associated to asymptomatic carotid disease challenging established practice. Need to identify vulnerable lesions prone to develop thromboembolic brain events and also vulnerable patients at a higher risk of stroke is necessary and essential to further improve effectiveness of our interventions. After review of published literature on natural history of asymptomatic carotid stenosis, diagnostic methods to identify plaque vulnerability and present-day results of both endarterectomy and stenting, a strategy for management of asymptomatic carotid stenosis is suggested aiming to reduce unnecessary interventions and effectively contribute to stroke prevention.
Collapse
Affiliation(s)
- José Fernandes e Fernandes
- Department of Surgery and Vascular Surgery, Faculty of Medicine University of Lisbon, Lisbon, Portugal
- Santa Maria University Hospital, Lisbon Academic Medical Center, Lisbon, Portugal
- Senior Consultant Vascular Surgeon, Cardiovascular Institute/Hospital da Luz Torres de Lisboa, Lisbon, Portugal
| | - Luis Mendes Pedro
- Senior Consultant Vascular Surgeon, Cardiovascular Institute/Hospital da Luz Torres de Lisboa, Lisbon, Portugal
- Department of Vascular Surgery, Faculty of Medicine University of Lisbon, Lisbon, Portugal
- Vascular Surgery Department, Santa Maria University Hospital, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Isabel Gonçalves
- Cardiology Department, Skåne University Hospital and Clinical Sciences Malmö, Lund University, Sweden
| |
Collapse
|
6
|
Viswanathan V, Jamthikar AD, Gupta D, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma A, Kancharana P, Misra DP, Agarwal V, Kitas GD, Nicolaides A, Suri JS. Does the Carotid Bulb Offer a Better 10-Year CVD/Stroke Risk Assessment Compared to the Common Carotid Artery? A 1516 Ultrasound Scan Study. Angiology 2020; 71:920-933. [PMID: 32696658 DOI: 10.1177/0003319720941730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objectives of this study are to (1) examine the "10-year cardiovascular risk" in the common carotid artery (CCA) versus carotid bulb using an integrated calculator called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0) and (2) evaluate the performance of AECRS2.0 against "conventional cardiovascular risk calculators." These objectives are met by measuring (1) image-based phenotypes and AECRS2.0 score computation and (2) performance evaluation of AECRS2.0 against 12 conventional cardiovascular risk calculators. The Asian-Indian cohort (n = 379) with type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), or hypertension were retrospectively analyzed by acquiring the 1516 carotid ultrasound scans (mean age: 55 ± 10.1 years, 67% males, ∼92% with T2DM, ∼83% with CKD [stage 1-5], and 87.5% with hypertension [stage 1-2]). The carotid bulb showed a higher 10-year cardiovascular risk compared to the CCA by 18% (P < .0001). Patients with T2DM and/or CKD also followed a similar trend. The carotid bulb demonstrated a superior risk assessment compared to CCA in patients with T2DM and/or CKD by showing: (1) ∼13% better than CCA (0.93 vs 0.82, P = .0001) and (2) ∼29% better compared with 12 types of risk conventional calculators (0.93 vs 0.72, P = .06).
Collapse
Affiliation(s)
- Vijay Viswanathan
- 58896Moopil Viswanathan Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, 29583Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, 29583Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andhra Pradesh, India
| | - Narendra N Khanna
- Department of Cardiology, 75911Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, 6752Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, 68993National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, 68993National and Kapodistrian University of Athens, Athens, Greece
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Priyanka Kancharana
- 58896Moopil Viswanathan Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | | | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - George D Kitas
- R & D Academic Affairs, 7714Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
7
|
Savaş S, Topaloğlu N, Kazcı Ö, Koşar PN. Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning. J Med Syst 2019; 43:273. [PMID: 31278481 DOI: 10.1007/s10916-019-1406-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 02/01/2023]
Abstract
Cerebrovascular accident due to carotid artery disease is the most common cause of death in developed countries following heart disease and cancer. For a reliable early detection of atherosclerosis, Intima Media Thickness (IMT) measurement and classification are important. A new method for decision support purpose for the classification of IMT was proposed in this study. Ultrasound images are used for IMT measurements. Images are classified and evaluated by experts. This is a manual procedure, so it causes subjectivity and variability in the IMT classification. Instead, this article proposes a methodology based on artificial intelligence methods for IMT classification. For this purpose, a deep learning strategy with multiple hidden layers has been developed. In order to create the proposed model, convolutional neural network algorithm, which is frequently used in image classification problems, is used. 501 ultrasound images from 153 patients were used to test the model. The images are classified by two specialists, then the model is trained and tested on the images, and the results are explained. The deep learning model in the study achieved an accuracy of 89.1% in the IMT classification with 89% sensitivity and 88% specificity. Thus, the assessments in this paper have shown that this methodology performs reasonable results for IMT classification.
Collapse
Affiliation(s)
- Serkan Savaş
- Faculty of Technology, Computer Engineering Department Ph.D, Gazi University, Ankara, Turkey.
| | - Nurettin Topaloğlu
- Faculty of Technology, Computer Engineering Department, Gazi University, Ankara, Turkey
| | - Ömer Kazcı
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Pınar Nercis Koşar
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
8
|
Jamthikar A, Gupta D, Khanna NN, Araki T, Saba L, Nicolaides A, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou A, Sfikakis PP, Kitas GD, Viswanathan V, Pareek G, Miner M, Suri JS. A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Curr Atheroscler Rep 2019; 21:25. [PMID: 31041615 DOI: 10.1007/s11883-019-0788-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography. RECENT FINDINGS In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and image-based (or integrated ML-based). The success of conventional (non-image-based) ML-based algorithms lies in the different data-driven patterns or features which are used to train the ML systems. Typically these features are the patients' demographics, serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in ML frameworks. Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii) the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | | | - Ajay Gupta
- Department of Radiology, Cornell Medical Center, New York, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology
- , National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- R&D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
9
|
Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Khanna NN, Suri JS. Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Comput Biol Med 2018; 101:184-198. [DOI: 10.1016/j.compbiomed.2018.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023]
|
10
|
Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Laird JR, Suri JS. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm. Comput Biol Med 2017; 91:198-212. [PMID: 29100114 DOI: 10.1016/j.compbiomed.2017.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Planning of percutaneous interventional procedures involves a pre-screening and risk stratification of the coronary artery disease. Current screening tools use stand-alone plaque texture-based features and therefore lack the ability to stratify the risk. METHOD This IRB approved study presents a novel strategy for coronary artery disease risk stratification using an amalgamation of IVUS plaque texture-based and wall-based measurement features. Due to common genetic plaque makeup, carotid plaque burden was chosen as a gold standard for risk labels during training-phase of machine learning (ML) paradigm. Cross-validation protocol was adopted to compute the accuracy of the ML framework. A set of 59 plaque texture-based features was padded with six wall-based measurement features to show the improvement in stratification accuracy. The ML system was executed using principle component analysis-based framework for dimensionality reduction and uses support vector machine classifier for training and testing-phases. RESULTS The ML system produced a stratification accuracy of 91.28%, demonstrating an improvement of 5.69% when wall-based measurement features were combined with plaque texture-based features. The fused system showed an improvement in mean sensitivity, specificity, positive predictive value, and area under the curve by: 6.39%, 4.59%, 3.31% and 5.48%, respectively when compared to the stand-alone system. While meeting the stability criteria of 5%, the ML system also showed a high average feature retaining power and mean reliability of 89.32% and 98.24%, respectively. CONCLUSIONS The ML system showed an improvement in risk stratification accuracy when the wall-based measurement features were fused with the plaque texture-based features.
Collapse
Affiliation(s)
| | | | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Petia Radeva
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
11
|
Saba L, Jain PK, Suri HS, Ikeda N, Araki T, Singh BK, Nicolaides A, Shafique S, Gupta A, Laird JR, Suri JS. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm. J Med Syst 2017; 41:98. [PMID: 28501967 DOI: 10.1007/s10916-017-0745-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads to stroke. Machine learning systems have been previously developed for plaque wall risk assessment using morphology-based characterization. The fundamental assumption in such systems is the extraction of the grayscale features of the plaque region. Even though these systems have the ability to perform risk stratification, they lack the ability to achieve higher performance due their inability to select and retain dominant features. This paper introduces a polling-based principal component analysis (PCA) strategy embedded in the machine learning framework to select and retain dominant features, resulting in superior performance. This leads to more stability and reliability. The automated system uses offline image data along with the ground truth labels to generate the parameters, which are then used to transform the online grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA cutoff of 0.995, the machine learning system is able to achieve an accuracy of 98.55 and 98.83%corresponding to the carotidfar wall and near wall plaques, respectively. The corresponding reliability of the system was 94.56 and 95.63%, respectively. The automated system was validated against the manual risk assessment system and the precision of merit for same cross-validation settings and PCA cutoffs are 98.28 and 93.92%for the far and the near wall, respectively.PCA-embedded morphology-based plaque characterization shows a powerful strategy for risk assessment and can be adapted in clinical settings.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Pankaj K Jain
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Bikesh K Singh
- Department of Biomedical Engineering, NIT Raipur, Raipur, Chhattisgarh, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England, UK.,Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Pocatello, ID, USA.
| |
Collapse
|
12
|
Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, Shrivastava VK, Saba L, Nicolaides A, Shafique S, Laird JR, Gupta A, Suri JS. Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm. Comput Biol Med 2016; 80:77-96. [PMID: 27915126 DOI: 10.1016/j.compbiomed.2016.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 01/26/2023]
Abstract
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Pankaj K Jain
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, USA
| | | | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
13
|
Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho R, Suri JS. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:118-134. [PMID: 27208527 DOI: 10.1016/j.cmpb.2016.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE Fatty liver disease (FLD) is one of the most common diseases in liver. Early detection can improve the prognosis considerably. Using ultrasound for FLD detection is highly desirable due to its non-radiation nature, low cost and easy use. However, the results can be slow and ambiguous due to manual detection. The lack of computer trained systems leads to low image quality and inefficient disease classification. Thus, the current study proposes novel, accurate and reliable detection system for the FLD using computer-based training system. MATERIALS AND METHODS One hundred twenty-four ultrasound sample images were selected retrospectively from a database of 62 patients consisting of normal and cancerous. The proposed training system was generated offline parameters using training liver image database. The classifier applied transformation parameters to an online system in order to facilitate real-time detection during the ultrasound scan. The system utilized six sets of features (a total of 128 features), namely Haralick, basic geometric, Fourier transform, discrete cosine transform, Gupta transform and Gabor transform. These features were extracted for both offline training and online testing. Levenberg-Marquardt back propagation network (BPN) classifier was used to classify the liver disease into normal and abnormal categories. RESULTS Random partitioning approach was adapted to evaluate the classifier performance and compute its accuracy. Utilizing all the six sets of 128 features, the computer aided diagnosis (CAD) system achieved classification accuracy of 97.58%. Furthermore, the four performance metrics consisting of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) realized 98.08%, 97.22%, 96.23%, and 98.59%, respectively. CONCLUSION The proposed system was successfully able to detect and classify the FLD. Furthermore, the proposed system was benchmarked against previous methods. The comparison established an advanced set of features in the Levenberg-Marquardt back propagation network reports a significant improvement compared to the existing techniques.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, Italy
| | - Nilanjan Dey
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Egypt
| | - Sourav Samanta
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | - Sayan Chakraborty
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - João Sanches
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - RuiTato Marinho
- Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School of Lisbon, Portugal
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department (Affl.), Idaho State University, ID, USA.
| |
Collapse
|
14
|
A novel approach to multiclass psoriasis disease risk stratification: Machine learning paradigm. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
A Review on Carotid Ultrasound Atherosclerotic Tissue Characterization and Stroke Risk Stratification in Machine Learning Framework. Curr Atheroscler Rep 2016; 17:55. [PMID: 26233633 DOI: 10.1007/s11883-015-0529-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiovascular diseases (including stroke and heart attack) are identified as the leading cause of death in today's world. However, very little is understood about the arterial mechanics of plaque buildup, arterial fibrous cap rupture, and the role of abnormalities of the vasa vasorum. Recently, ultrasonic echogenicity characteristics and morphological characterization of carotid plaque types have been shown to have clinical utility in classification of stroke risks. Furthermore, this characterization supports aggressive and intensive medical therapy as well as procedures, including endarterectomy and stenting. This is the first state-of-the-art review to provide a comprehensive understanding of the field of ultrasonic vascular morphology tissue characterization. This paper presents fundamental and advanced ultrasonic tissue characterization and feature extraction methods for analyzing plaque. Additionally, the paper shows how the risk stratification is achieved using machine learning paradigms. More advanced methods need to be developed which can segment the carotid artery walls into multiple regions such as the bulb region and areas both proximal and distal to the bulb. Furthermore, multimodality imaging is needed for validation of such advanced methods for stroke and cardiovascular risk stratification.
Collapse
|
16
|
Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: A first comparative study of its kind. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 126:98-109. [PMID: 26830378 DOI: 10.1016/j.cmpb.2015.11.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Psoriasis is an autoimmune skin disease with red and scaly plaques on skin and affecting about 125 million people worldwide. Currently, dermatologist use visual and haptic methods for diagnosis the disease severity. This does not help them in stratification and risk assessment of the lesion stage and grade. Further, current methods add complexity during monitoring and follow-up phase. The current diagnostic tools lead to subjectivity in decision making and are unreliable and laborious. This paper presents a first comparative performance study of its kind using principal component analysis (PCA) based CADx system for psoriasis risk stratification and image classification utilizing: (i) 11 higher order spectra (HOS) features, (ii) 60 texture features, and (iii) 86 color feature sets and their seven combinations. Aggregate 540 image samples (270 healthy and 270 diseased) from 30 psoriasis patients of Indian ethnic origin are used in our database. Machine learning using PCA is used for dominant feature selection which is then fed to support vector machine classifier (SVM) to obtain optimized performance. Three different protocols are implemented using three kinds of feature sets. Reliability index of the CADx is computed. Among all feature combinations, the CADx system shows optimal performance of 100% accuracy, 100% sensitivity and specificity, when all three sets of feature are combined. Further, our experimental result with increasing data size shows that all feature combinations yield high reliability index throughout the PCA-cutoffs except color feature set and combination of color and texture feature sets. HOS features are powerful in psoriasis disease classification and stratification. Even though, independently, all three set of features HOS, texture, and color perform competitively, but when combined, the machine learning system performs the best. The system is fully automated, reliable and accurate.
Collapse
Affiliation(s)
- Vimal K Shrivastava
- Electrical Engineering Department, National Institute of Technology, Raipur, India.
| | - Narendra D Londhe
- Electrical Engineering Department, National Institute of Technology, Raipur, India; Skin Point-of-Care Division, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| | - Rajendra S Sonawane
- Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India.
| | - Jasjit S Suri
- Skin Point-of-Care Division, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), ID, USA.
| |
Collapse
|
17
|
Araki T, Ikeda N, Shukla D, Londhe ND, Shrivastava VK, Banchhor SK, Saba L, Nicolaides A, Shafique S, Laird JR, Suri JS. A new method for IVUS-based coronary artery disease risk stratification: A link between coronary & carotid ultrasound plaque burdens. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 124:161-179. [PMID: 26707374 DOI: 10.1016/j.cmpb.2015.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Interventional cardiologists have a deep interest in risk stratification prior to stenting and percutaneous coronary intervention (PCI) procedures. Intravascular ultrasound (IVUS) is most commonly adapted for screening, but current tools lack the ability for risk stratification based on grayscale plaque morphology. Our hypothesis is based on the genetic makeup of the atherosclerosis disease, that there is evidence of a link between coronary atherosclerosis disease and carotid plaque built up. This novel idea is explored in this study for coronary risk assessment and its classification of patients between high risk and low risk. This paper presents a strategy for coronary risk assessment by combining the IVUS grayscale plaque morphology and carotid B-mode ultrasound carotid intima-media thickness (cIMT) - a marker of subclinical atherosclerosis. Support vector machine (SVM) learning paradigm is adapted for risk stratification, where both the learning and testing phases use tissue characteristics derived from six feature combinational spaces, which are then used by the SVM classifier with five different kernels sets. These six feature combinational spaces are designed using 56 novel feature sets. K-fold cross validation protocol with 10 trials per fold is used for optimization of best SVM-kernel and best feature combination set. IRB approved coronary IVUS and carotid B-mode ultrasound were jointly collected on 15 patients (2 days apart) via: (a) 40MHz catheter utilizing iMap (Boston Scientific, Marlborough, MA, USA) with 2865 frames per patient (42,975 frames) and (b) linear probe B-mode carotid ultrasound (Toshiba scanner, Japan). Using the above protocol, the system shows the classification accuracy of 94.95% and AUC of 0.95 using optimized feature combination. This is the first system of its kind for risk stratification as a screening tool to prevent excessive cost burden and better patients' cardiovascular disease management, while validating our two hypotheses.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Devarshi Shukla
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | | | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England, United Kingdom; Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus
| | | | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
18
|
Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Exploring the color feature power for psoriasis risk stratification and classification: A data mining paradigm. Comput Biol Med 2015; 65:54-68. [PMID: 26298486 DOI: 10.1016/j.compbiomed.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/25/2022]
Abstract
A large percentage of dermatologist׳s decision in psoriasis disease assessment is based on color. The current computer-aided diagnosis systems for psoriasis risk stratification and classification lack the vigor of color paradigm. The paper presents an automated psoriasis computer-aided diagnosis (pCAD) system for classification of psoriasis skin images into psoriatic lesion and healthy skin, which solves the two major challenges: (i) fulfills the color feature requirements and (ii) selects the powerful dominant color features while retaining high classification accuracy. Fourteen color spaces are discovered for psoriasis disease analysis leading to 86 color features. The pCAD system is implemented in a support vector-based machine learning framework where the offline image data set is used for computing machine learning offline color machine learning parameters. These are then used for transformation of the online color features to predict the class labels for healthy vs. diseased cases. The above paradigm uses principal component analysis for color feature selection of dominant features, keeping the original color feature unaltered. Using the cross-validation protocol, the above machine learning protocol is compared against the standalone grayscale features with 60 features and against the combined grayscale and color feature set of 146. Using a fixed data size of 540 images with equal number of healthy and diseased, 10 fold cross-validation protocol, and SVM of polynomial kernel of type two, pCAD system shows an accuracy of 99.94% with sensitivity and specificity of 99.93% and 99.96%. Using a varying data size protocol, the mean classification accuracies for color, grayscale, and combined scenarios are: 92.85%, 93.83% and 93.99%, respectively. The reliability of the system in these three scenarios are: 94.42%, 97.39% and 96.00%, respectively. We conclude that pCAD system using color space alone is compatible to grayscale space or combined color and grayscale spaces. We validated our pCAD system against facial color databases and the results are consistent in accuracy and reliability.
Collapse
Affiliation(s)
- Vimal K Shrivastava
- Electrical Engineering Department, National Institute of Technology, Raipur, India.
| | - Narendra D Londhe
- Electrical Engineering Department, National Institute of Technology, Raipur, India; Skin Point-of-Care Division, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| | - Rajendra S Sonawane
- Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India.
| | - Jasjit S Suri
- Skin Point-of-Care Division, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA.
| |
Collapse
|
19
|
Afonso D, Seabra J, Pedro LM, Fernandes JFE, Sanches JM. An Ultrasonographic Risk Score For Detecting Symptomatic Carotid Atherosclerotic Plaques. IEEE J Biomed Health Inform 2015; 19:1505-13. [DOI: 10.1109/jbhi.2014.2359236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|