1
|
Dissabandara T, Lin K, Forwood M, Sun J. Validating real-time three-dimensional echocardiography against cardiac magnetic resonance, for the determination of ventricular mass, volume and ejection fraction: a meta-analysis. Clin Res Cardiol 2024; 113:367-392. [PMID: 37079054 PMCID: PMC10881629 DOI: 10.1007/s00392-023-02204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Real-time three-dimensional echocardiography (RT3DE) is currently being developed to overcome the challenges of two-dimensional echocardiography, as it is a much cheaper alternative to the gold standard imaging method, cardiac magnetic resonance (CMR). The aim of this meta-analysis is to validate RT3DE by comparing it to CMR, to ascertain whether it is a practical imaging method for routine clinical use. METHODS A systematic review and meta-analysis method was used to synthesise the evidence and studies published between 2000 and 2021 were searched using a PRISMA approach. Study outcomes included left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), left ventricular ejection fraction (LVEF), left ventricular mass (LVM), right ventricular end-systolic volume (RVESV), right ventricular end-diastolic volume (RVEDV) and right ventricular ejection fraction (RVEF). Subgroup analysis included study quality (high, moderate), disease outcomes (disease, healthy and disease), age group (50 years old and under, over 50 years), imaging plane (biplane, multiplane) and publication year (2010 and earlier, after 2010) to determine whether they explained the heterogeneity and significant difference results generated on RT3DE compared to CMR. RESULTS The pooled mean differences for were - 5.064 (95% CI - 10.132, 0.004, p > 0.05), 4.654 (95% CI - 4.947, 14.255, p > 0.05), - 0.783 (95% CI - 5.630, 4.065, p > 0.05, - 0.200 (95% CI - 1.215, 0.815, p > 0.05) for LVEF, LVM, RVESV and RVEF, respectively. We found no significant difference between RT3DE and CMR for these variables. Although, there was a significant difference between RT3DE and CMR for LVESV, LVEDV and RVEDV where RT3DE reports a lower value. Subgroup analysis indicated a significant difference between RT3DE and CMR for studies with participants with an average age of over 50 years but no significant difference for those under 50. In addition, a significant difference between RT3DE and CMR was found in studies using only participants with cardiovascular diseases but not in those using a combination of diseased and healthy participants. Furthermore, for the variables LVESV and LVEDV, the multiplane method shows no significant difference between RT3DE and CMR, as opposed to the biplane showing a significant difference. This potentially indicates that increased age, the presence of cardiovascular disease and the biplane analysis method decrease its concordance with CMR. CONCLUSION This meta-analysis indicates promising results for the use of RT3DE, with limited difference to CMR. Although in some cases, RT3DE appears to underestimate volume, ejection fraction and mass when compared to CMR. Further research is required in terms of imaging method and technology to validate RT3DE for routine clinical use.
Collapse
Affiliation(s)
- Thilini Dissabandara
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
| | - Kelly Lin
- Schools of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Mark Forwood
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jing Sun
- Schools of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
- Institute for Integrated Intelligence and Systems, Griffith University, Brisbane, Australia.
| |
Collapse
|
2
|
Xin XX, Se YY. Caution in the use of sedation and endomyocardial biopsy for the management of pediatric acute heart failure caused by endocardial fibroelastosis. World J Clin Cases 2023; 11:5412-5415. [PMID: 37621580 PMCID: PMC10445076 DOI: 10.12998/wjcc.v11.i22.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Endocardial fibroelastosis (EFE) is commonly considered to be an inflammatory reactive lesion of hyperplasia and deposition of tissue fibers and collagen in the endocardium and/or subendocardium, which is strongly associated with endocardial sclerosis, ventricular remodeling and acute and chronic heart failure, and is one of the important causes for pediatric heart transplantation. Early diagnosis and treatment are the key factors in determining the prognosis of the children. In this paper, we would like to highlight the potential unintended consequences of the use of sedation and biopsy for pediatric acute heart failure caused by EFE and the comprehensive considerations prior to clinical diagnosis.
Collapse
Affiliation(s)
- Xiao-Xuan Xin
- School of Hulunbuir Clinical Medicine, Inner Mongolia Minzu University, Hulunbuir 021000, Inner Mongolia Autonomous Region, China
| | - Yo-Yeng Se
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
3
|
Xin XX, Se YY. Caution in the use of sedation and endomyocardial biopsy for the management of pediatric acute heart failure caused by endocardial fibroelastosis. World J Clin Cases 2023; 11:5406-5409. [DOI: 10.12998/wjcc.v11.i22.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Endocardial fibroelastosis (EFE) is commonly considered to be an inflammatory reactive lesion of hyperplasia and deposition of tissue fibers and collagen in the endocardium and/or subendocardium, which is strongly associated with endocardial sclerosis, ventricular remodeling and acute and chronic heart failure, and is one of the important causes for pediatric heart transplantation. Early diagnosis and treatment are the key factors in determining the prognosis of the children. In this paper, we would like to highlight the potential unintended consequences of the use of sedation and biopsy for pediatric acute heart failure caused by EFE and the comprehensive considerations prior to clinical diagnosis.
Collapse
Affiliation(s)
- Xiao-Xuan Xin
- School of Hulunbuir Clinical Medicine, Inner Mongolia Minzu University, Hulunbuir 021000, Inner Mongolia Autonomous Region, China
| | - Yo-Yeng Se
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Rashdan L, Hodovan J, Masri A. Imaging cardiac hypertrophy in hypertrophic cardiomyopathy and its differential diagnosis. Curr Opin Cardiol 2023:00001573-990000000-00084. [PMID: 37421401 DOI: 10.1097/hco.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to review imaging of myocardial hypertrophy in hypertrophic cardiomyopathy (HCM) and its phenocopies. The introduction of cardiac myosin inhibitors in HCM has emphasized the need for careful evaluation of the underlying cause of myocardial hypertrophy. RECENT FINDINGS Advances in imaging of myocardial hypertrophy have focused on improving precision, diagnosis, and predicting prognosis. From improved assessment of myocardial mass and function, to assessing myocardial fibrosis without the use of gadolinium, imaging continues to be the primary tool in understanding myocardial hypertrophy and its downstream effects. Advances in differentiating athlete's heart from HCM are noted, and the increasing rate of diagnosis in cardiac amyloidosis using noninvasive approaches is especially highlighted due to the implications on treatment approach. Finally, recent data on Fabry disease are shared as well as differentiating other phenocopies from HCM. SUMMARY Imaging hypertrophy in HCM and ruling out other phenocopies is central to the care of patients with HCM. This space will continue to rapidly evolve, as disease-modifying therapies are under investigation and being advanced to the clinic.
Collapse
Affiliation(s)
- Lana Rashdan
- Hypertrophic Cardiomyopathy Center, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
5
|
De Bosscher R, Claeys M, Dausin C, Goetschalckx K, Claus P, Herbots L, Ghekiere O, Van De Heyning C, Paelinck BP, Janssens K, Wright L, Flannery MD, La Gerche A, Willems R, Heidbuchel H, Bogaert J, Claessen G. Three-dimensional echocardiography of the athlete's heart: a comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2023; 39:295-306. [PMID: 36151432 DOI: 10.1007/s10554-022-02726-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Three-dimensional echocardiography (3DE) is the most accurate cardiac ultrasound technique to assess cardiac structure. 3DE has shown close correlation with cardiac magnetic resonance imaging (CMR) in various populations. There is limited data on the accuracy of 3DE in athletes and its value in detecting alterations during follow-up. Indexed left and right ventricular end-diastolic volume (LVEDVi, RVEDVi), end-systolic volume, ejection fraction (LVEF, RVEF) and left ventricular mass (LVMi) were assessed by 3DE and CMR in two-hundred and one competitive endurance athletes (79% male) from the Pro@Heart trial. Sixty-four athletes were assessed at 2 year follow-up. Linear regression and Bland-Altman analyses compared 3DE and CMR at baseline and follow-up. Interquartile analysis evaluated the agreement as cardiac volumes and mass increase. 3DE showed strong correlation with CMR (LVEDVi r = 0.91, LVEF r = 0.85, LVMi r = 0.84, RVEDVi r = 0.84, RVEF r = 0.86 p < 0.001). At follow up, the percentage change by 3DE and CMR were similar (∆LVEDVi r = 0.96 bias - 0.3%, ∆LVEF r = 0.94, bias 0.7%, ∆LVMi r = 0.94 bias 0.8%, ∆RVESVi r = 0.93, bias 1.2%, ∆RVEF r = 0.87 bias 0.4%). 3DE underestimated volumes (LVEDVi bias - 18.5 mL/m2, RVEDVi bias - 25.5 mL/m2) and the degree of underestimation increased with larger dimensions (Q1vsQ4 LVEDVi relative bias - 14.5 versus - 17.4%, p = 0.016; Q1vsQ4 RVEDVi relative bias - 17 versus - 21.9%, p = 0.005). Measurements of cardiac volumes, mass and function by 3DE correlate well with CMR and 3DE accurately detects changes over time. 3DE underestimates volumes and the relative bias increases with larger cardiac size.
Collapse
Affiliation(s)
- Ruben De Bosscher
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. .,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium. .,Department of Cardiovascular Medicine, University Hospitals Leuven, B-3000, Leuven, Belgium.
| | - Mathias Claeys
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Lieven Herbots
- Department of Cardiology, Hartcentrum, Jessa Ziekenhuis, Hasselt, Belgium.,REVAL/BIOMED, Hasselt University, Diepenbeek, Belgium
| | - Olivier Ghekiere
- REVAL/BIOMED, Hasselt University, Diepenbeek, Belgium.,Department of Radiology, Jessa Ziekenhuis, Hasselt, Belgium
| | - Caroline Van De Heyning
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Bernard P Paelinck
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Kristel Janssens
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Leah Wright
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - André La Gerche
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Guido Claessen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Zhang M, Chen X, Yang F, Song Y, Zhang D, Chen Q, Ma Y, Wang S, Ji D, Duan Z, Zhang L, Wang Q. Evaluation of Left Ventricular Mass in Different Cardiac Geometry Using Three-Dimensional Contrast-Enhanced Echocardiography. Int Heart J 2023; 64:885-893. [PMID: 37778991 DOI: 10.1536/ihj.22-663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A total of 69 patients were enrolled in the study, including 23 patients with hypertrophic cardiomyopathy (HCM), 26 patients with Left Ventricle (LV) enlargement comprising 16 dilated cardiomyopathy (DCM) patients and 10 ischemic cardiomyopathy (ICM) patients, and 20 control subjects. All patients underwent 2DE, contrast-enhanced 2DE (Contrast-2DE), 3DE, Contrast-3DE, and single photon emission computed tomography (SPECT) examinations. The 2DE-AL and 3DE methods measured the left ventricular mass (LVM). The results were compared with those measured by SPECT. The measured LVM of the 69 patients was systematically overestimated by 2DE-AL (177.4 ± 56.2 g), Contrast-2DE-AL (174.5 ± 55.5 g), 3DE (167.3 ± 59.2 g), and Contrast-3DE (154.2 ± 46.7 g) when compared with SPECT (148.5 ± 52.4 g) (P < 0.05), while Contrast-3DE provided the best agreement with SPECT in LVM measurement (r = 0.898, P < 0.001) and had the smallest deviation (5.7 ± 23.1 g). 3DE overestimated LVM more compared to Contrast-3DE in LV hypertrophy group (165.5 ± 37.9 g versus 153.5 ± 27.6 g, P = 0.003) and LV enlargement group (204.5 ± 69.3 g versus 183.5 ± 53.5 g, P = 0.006). For 2DE methods, there was no significant difference between the LVM obtained with or without contrast enhancement in control group (132.3 ± 23.6 g versus 128.4 ± 23.3 g), LV hypertrophy group (177.7 ± 38.6 versus 178.3 ± 30.9 g, P = 0.889), and LV enlargement group (211.9 ± 63.2 g versus 206.5 ± 66.0 g, P = 0.386). The difference between LVM measured by 2DE-AL and SPECT was the greatest (27.9 ± 34.0 g), especially in LV hypertrophy group and LV enlargement group (LV hypertrophy group 39.7 ± 26.0 g; LV enlargement group 24.2 ± 42.8 g). To conclude, Contrast-3DE and SPECT show greater consistency in LVM measurement, especially in cardiomyopathy, when compared with 2DE. Administering contrast can effectively reduce the overestimation of LVM by non-contrast DE.
Collapse
Affiliation(s)
- Meiqing Zhang
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Xu Chen
- Medical School of Chinese PLA
| | - Feifei Yang
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital
| | - Yanjie Song
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Dai Zhang
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Qiang Chen
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Yongjiang Ma
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Shuhua Wang
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Dongdong Ji
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| | - Zhongxiang Duan
- Department of Nuclear Medicine, Fourth Medical Center of Chinese PLA General Hospital
| | - Liwei Zhang
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital
| | - Qiushuang Wang
- Department of Cardiology, Fourth Medical Center of Chinese PLA General Hospital
| |
Collapse
|
7
|
Kristensen CB, Myhr KA, Grund FF, Vejlstrup N, Hassager C, Mattu R, Mogelvang R. A new method to quantify left ventricular mass by 2D echocardiography. Sci Rep 2022; 12:9980. [PMID: 35705586 PMCID: PMC9200734 DOI: 10.1038/s41598-022-13677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Increased left ventricular mass (LVM) is a strong independent predictor for adverse cardiovascular events, but conventional echocardiographic methods are limited by poor reproducibility and accuracy. We developed a novel method based on adding the mean wall thickness from the parasternal short axis view, to the left ventricular end-diastolic volume acquired using the biplane model of discs. The participants (n = 85) had various left ventricular geometries and were assessed using echocardiography followed immediately by cardiac magnetic resonance, as reference. We compared our novel two-dimensional (2D) method to various conventional one-dimensional (1D) and other 2D methods as well as the three-dimensional (3D) method. Our novel method had better reproducibility in intra-examiner [coefficients of variation (CV) 9% vs. 11–14%] and inter-examiner analysis (CV 9% vs. 10–20%). Accuracy was similar to the 3D method (mean difference ± 95% limits of agreement, CV): Novel: 2 ± 50 g, 15% vs. 3D: 2 ± 51 g, 16%; and better than the “linear” 1D method by Devereux (7 ± 76 g, 23%). Our novel method is simple, has considerable better reproducibility and accuracy than conventional “linear” 1D methods, and similar accuracy as the 3D-method. As the biplane model forms part of the standard echocardiographic protocol, it does not require specific training and provides a supplement to the modern echocardiographic report.
Collapse
Affiliation(s)
- Charlotte Burup Kristensen
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Katrine Aagaard Myhr
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Frederik Fasth Grund
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2100, Copenhagen, Denmark
| | - Raj Mattu
- Kettering General Hospital NHS Foundation Trust, Kettering, NN16 8UZ, Northants, UK.,University College London, Gower St, London, WC1E 6BT, UK
| | - Rasmus Mogelvang
- Department of Cardiology, The Heart Center, Rigshospitalet - University hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2100, Copenhagen, Denmark.,Cardiovascular Research Unit, University of Southern Denmark, Baagoees allé 15, 5700, Svendborg, Denmark
| |
Collapse
|
8
|
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, Gilliland Y, Lester SJ, Maldonado Y, Mohiddin S, Nieman K, Sperry BW, Woo A. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2022; 35:533-569. [PMID: 35659037 DOI: 10.1016/j.echo.2022.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases. Symptoms can be related to a range of pathophysiologic mechanisms including left ventricular outflow tract obstruction with or without significant mitral regurgitation, diastolic dysfunction with heart failure with preserved and heart failure with reduced ejection fraction, autonomic dysfunction, ischemia, and arrhythmias. Appropriate understanding and utilization of multimodality imaging is fundamental to accurate diagnosis as well as longitudinal care of patients with HCM. Resting and stress imaging provide comprehensive and complementary information to help clarify mechanism(s) responsible for symptoms such that appropriate and timely treatment strategies may be implemented. Advanced imaging is relied upon to guide certain treatment options including septal reduction therapy and mitral valve repair. Using both clinical and imaging parameters, enhanced algorithms for sudden cardiac death risk stratification facilitate selection of HCM patients most likely to benefit from implantable cardioverter-defibrillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Saidi Mohiddin
- Inherited/Acquired Myocardial Diseases, Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Koen Nieman
- Cardiovascular Medicine and Radiology (CV Imaging), Stanford University Medical Center, CA
| | - Brett W Sperry
- Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Anna Woo
- Toronto General Hospital, Toronto, Canada
| |
Collapse
|
9
|
Sun LJ, Li Y, Qiao W, Yu JH, Ren WD. Incremental value of three-dimensional and contrast echocardiography in the evaluation of endocardial fibroelastosis and multiple cardiovascular thrombi: A case report. World J Clin Cases 2021; 9:3365-3371. [PMID: 34002146 PMCID: PMC8107911 DOI: 10.12998/wjcc.v9.i14.3365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endocardial fibroelastosis (EFE) is a rare heart disease characterized by thickening of the endocardium caused by massive proliferation of collagenous and elastic tissue, usually leading to impaired cardiac function. Multimodality cardiovascular imaging for the evaluation of EFE with thrombi is even rarer.
CASE SUMMARY We report a rare case of EFE associated with multiple cardiovascular thrombi. Three-dimensional (3D) and contrast echocardiography (CE) were used to assess ventricular thrombi. Anticoagulant therapy was administered to eliminate the thrombi. The peripheral contrast-enhanced thrombi with the highest risk were dissolved with anticoagulant therapy at the time of reexamination, which was consistent with the presumption of fresh loose thrombi.
CONCLUSION This new echocardiography technique has a great advantage in the diagnosis and treatment of EFE. On the basis of conventional echocardiography, 3D echocardiography is used to display the position, shape, and narrow base of the thrombus. CE does not only help to confirm the diagnosis of thrombus, but also determines its risk.
Collapse
Affiliation(s)
- Li-Juan Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Department of Ultrasound, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
| | - Ying Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wei Qiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jia-Hui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wei-Dong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
10
|
Rrapo Kaso E, Kramer CM. Multimodality Imaging for Hypertrophic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Rendón-Giraldo JA, Godoy-Palomino AL. Detección temprana de la falla cardiaca en pacientes diabéticos: Más allá de la fracción de eyección. REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [DOI: 10.1016/j.rccar.2019.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Losi MA, Imbriaco M, Canciello G, Pacelli F, Di Nardo C, Lombardi R, Izzo R, Mancusi C, Ponsiglione A, Dell'Aversana S, Cuocolo A, de Simone G, Trimarco B, Barbato E. Left Ventricular Mass in Hypertrophic Cardiomyopathy Assessed by 2D-Echocardiography: Validation with Magnetic Resonance Imaging. J Cardiovasc Transl Res 2019; 13:238-244. [PMID: 31489577 DOI: 10.1007/s12265-019-09911-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
We aim to validate echocardiographic left ventricular (LV) mass (echoLVM) in sixty-one patients with hypertrophic cardiomyopathy (HCM), using cardiac magnetic resonance measures (cmrLVM) as gold standard. cmrLVM was calculated using LV short-axis images, from base to apex, whereas echoLVM by LV epicardial minus LV endocardial volumes in 4 and 2 chamber views, using Simpson disk summation; trabeculae and papillary muscle were excluded in both cmrLVM and echoLVM. cmrLVM and echoLVM were not different by paired t test (145 ± 66 vs 147 ± 61; p = 0.240), and their correlation was good (r = 0.977; p < 0.0001). Intraclass correlation demonstrated reliability of echoLVM with cmrLVM (ρ = 0.987; Cls = 0.978-0.992; p < 0.0001). LV end-diastolic volume was higher by CMR than that by echo (137 ± 33 vs 85 ± 28 mL, p < 0.0001), resulting in a lower mass/volume ratio (1.1 ± 0.4 vs 1.8 ± 0.8, p < 0.0001). EchoLVM may be determined in patients with HCM. However, mass/volume ratio is higher by echocardiography than that by CMR.
Collapse
Affiliation(s)
- Maria Angela Losi
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy.
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Grazia Canciello
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Filomena Pacelli
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Carlo Di Nardo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Raffaella Lombardi
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Serena Dell'Aversana
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Giovanni de Simone
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| | - Emanuele Barbato
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S Pansini, I-80131, Naples, Italy
| |
Collapse
|
13
|
Goo HW. Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass. Pediatr Radiol 2019; 49:318-326. [PMID: 30470863 DOI: 10.1007/s00247-018-4303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Semiautomatic three-dimensional (3-D) threshold-based cardiac computed tomography (CT) quantification has not been attempted for left ventricular mass. OBJECTIVE To evaluate the technical feasibility of semiautomatic 3-D threshold-based cardiac CT quantification of left ventricular mass in patients with various degrees of left ventricular hypertrophy. MATERIALS AND METHODS In 99 patients, cardiac CT was utilized to quantify ventricular volume and mass by using a semiautomatic 3-D threshold-based method. Left ventricular mass values were compared between the end-systole and the end-diastole. Volumetric parameters were compared among three left ventricular hypertrophy groups (definite, borderline, none). The reproducibility was assessed. The t-test, one-way analysis of variance and Pearson correlation were used. RESULTS There were no technical failures. The left ventricular mass between the two sessions exhibited a small mean difference of 2.3±1.1% (mean±standard deviation). The indexed mass values were significantly higher at the end-systole than at the end-diastole (71.4±42.9 g/m2 vs. 65.9±43.3 g/m2, P<0.001), with significant correlation (R=0.99, P<0.001). The definite group (83.5±41.3 g/m2) showed statistically significantly higher indexed mass values than the borderline and none groups (64.7±26.9 and 55.6±23.9 g/m2, respectively; P<0.03), while demonstrating no statistically significant difference between the latter two groups (P>0.05). Left ventricular volume-mass and mass-volume ratios could be calculated in all three groups. CONCLUSION CT quantification of left ventricular mass using semiautomatic 3-D threshold-based segmentation is feasible with high reproducibility and the mass values and its ratios with ventricular volumes may be used in patients with various degrees of left ventricular hypertrophy.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
14
|
Surkova E, Muraru D, Aruta P, Romeo G, Bidviene J, Cherata D, Badano LP. Current Clinical Applications of Three-Dimensional Echocardiography: When the Technique Makes the Difference. Curr Cardiol Rep 2017; 18:109. [PMID: 27628295 DOI: 10.1007/s11886-016-0787-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in ultrasound, computer, and electronics technology have permitted three-dimensional echocardiography (3DE) to become a clinically viable imaging modality, with significant impact on patient diagnosis, management, and outcome. Thanks to the inception of a fully sampled matrix transducer for transthoracic and transesophageal probes, 3DE now offers much faster and easier data acquisition, immediate display of anatomy, and the possibility of online quantitative analysis of cardiac chambers and heart valves. The clinical use of transthoracic 3DE has been primarily focused, albeit not exclusively, on the assessment of cardiac chamber volumes and function. Transesophageal 3DE has been applied mostly for assessing heart valve anatomy and function. The advantages of using 3DE to measure cardiac chamber volumes derive from the lack of geometric assumptions about their shape and the avoidance of the apical view foreshortening, which are the main shortcomings of volume calculations from two-dimensional echocardiographic views. Moreover, 3DE offers a unique realistic en face display of heart valves, congenital defects, and surrounding structures allowing a better appreciation of the dynamic functional anatomy of cardiac abnormalities in vivo. Offline quantitation of 3DE data sets has made significant contributions to our mechanistic understanding of normal and diseased heart valves, as well as of their alterations induced by surgical or interventional procedures. As reparative cardiac surgery and transcatheter procedures become more and more popular for treating structural heart disease, transesophageal 3DE has expanded its role as the premier technique for procedure planning, intra-procedural guidance, as well as for checking device function and potential complications after the procedure.
Collapse
Affiliation(s)
- Elena Surkova
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Department of Internal Medicine, Samara State Medical University, Chapaevskaya Str. 89, 443099, Samara, Russian Federation
| | - Denisa Muraru
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Patrizia Aruta
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Gabriella Romeo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Jurate Bidviene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Diana Cherata
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Department of Cardiology, "Filantropia" Municipal Hospital, Craiova, Romania
| | - Luigi P Badano
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
15
|
Geraldino-Pardilla L, Russo C, Sokolove J, Robinson WH, Zartoshti A, Van Eyk J, Fert-Bober J, Lima J, Giles JT, Bathon JM. Association of anti-citrullinated protein or peptide antibodies with left ventricular structure and function in rheumatoid arthritis. Rheumatology (Oxford) 2017; 56:534-540. [PMID: 27994093 DOI: 10.1093/rheumatology/kew436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/27/2023] Open
Abstract
Objective High levels of ACPAs in RA are associated with more severe arthritis and worse prognosis. However, the role of ACPAs in mediating the increased risk of heart failure in RA remains undefined. We examined whether specific ACPAs were associated with subclinical left ventricular (LV) phenotypes that presage heart failure. Methods Sera from RA patients without clinical cardiovascular disease were assayed for specific ACPAs using a custom Bio-Plex bead assay, and their cross-sectional associations with cardiac magnetic resonance-derived LV measures were evaluated. High ACPA level was defined as ⩾ 75th percentile. Findings were assessed in a second independent RA cohort with an expanded panel of ACPAs and LV measures assessed by 3D-echocardiography. Results In cohort 1 (n = 76), higher levels of anti-citrullinated fibrinogen 41-60 and anti-citrullinated vimentin antibodies were associated with a 10 and 6% higher adjusted mean LV mass index (LVMI), respectively, compared with lower antibody levels (P < 0.05). In contrast, higher levels of anti-citrullinated biglycan 247-266 were associated with a 13% lower adjusted mean LVMI compared with lower levels (P < 0.001). In cohort 2 (n = 74), the association between ACPAs targeting citrullinated fibrinogen and citrullinated vimentin peptides or protein and LVMI was confirmed: higher anti-citrullinated fibrinogen 556-575 and anti-citrullinated vimentin 58-77 antibody levels were associated with a higher adjusted mean LVMI (19 and 15%, respectively; P < 0.05), but no association with biglycan was found. Conclusion Higher levels of antibodies targeting citrullinated fibrinogen and vimentin peptides or protein were associated with a higher mean LVMI in both RA cohorts, potentially implicating autoimmune targeting of citrullinated proteins in myocardial remodelling in RA.
Collapse
Affiliation(s)
| | - Cesare Russo
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY
| | - Jeremy Sokolove
- Department of Medicine, Stanford University School of Medicine, Stanford.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto
| | - William H Robinson
- Department of Medicine, Stanford University School of Medicine, Stanford.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto
| | - Afshin Zartoshti
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY
| | - Jenny Van Eyk
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Justyna Fert-Bober
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Joao Lima
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jon T Giles
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY
| | - Joan M Bathon
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY
| |
Collapse
|