1
|
Zhou T, Zhang H, Chen M, Zhang Y, Chen G, Zou G, Liang H. Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010188. [PMID: 36676139 PMCID: PMC9864750 DOI: 10.3390/life13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yingping Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
2
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
3
|
Rhen T, Even Z, Brenner A, Lodewyk A, Das D, Singh S, Simmons R. Evolutionary Turnover in Wnt Gene Expression but Conservation of Wnt Signaling during Ovary Determination in a TSD Reptile. Sex Dev 2021; 15:47-68. [PMID: 34280932 DOI: 10.1159/000516973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/01/2021] [Indexed: 11/19/2022] Open
Abstract
Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.
Collapse
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zachary Even
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alaina Brenner
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexandra Lodewyk
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sunil Singh
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rebecca Simmons
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
4
|
Xiong L, Dong J, Jiang H, Zan J, Tong J, Liu J, Wang M, Nie L. Transcriptome sequencing and comparative analysis of adult ovary and testis identify potential gonadal maintenance-related genes in Mauremys reevesii with temperature-dependent sex determination. PeerJ 2019; 7:e6557. [PMID: 30867990 PMCID: PMC6410691 DOI: 10.7717/peerj.6557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/03/2019] [Indexed: 01/09/2023] Open
Abstract
Mauremys reevesii is a classical organism with temperature-dependent sex determination (TSD). Gonad development in early life has recently received considerable attention but gonadal maintenance after sex differentiation in turtles with TSD remains a mystery. In this study, we sequenced the transcriptomes for the adult testis and ovary using RNA-seq, and 36,221 transcripts were identified. In total, 1,594 differentially expressed genes (DEGs) were identified where 756 DEGs were upregulated in the testis and 838 DEGs were upregulated in the ovary. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the TGF-beta signaling pathway and Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. We determined the existence of antagonistic networks containing significant specific-expressed genes and pathways related to gonadal maintenance and gametogenesis in the adult gonads of M. reevesii. The candidate gene Fibronectin type 3 and ankyrin repeat domains 1 (FANK1) might be involved with the regulation of testis spermatogenesis.
Collapse
Affiliation(s)
- Lei Xiong
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China.,Biochemistry Department of Wannan Medical College, Provincial Key Laboratory of Biological Macro-molecules Research, Wuhu, Anhui, P.R. China
| | - Jinxiu Dong
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| | - Hui Jiang
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| | - Jiawei Zan
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| | - Jiucui Tong
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China.,Biochemistry Department of Wannan Medical College, Provincial Key Laboratory of Biological Macro-molecules Research, Wuhu, Anhui, P.R. China
| | - Jianjun Liu
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| | - Meng Wang
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| | - Liuwang Nie
- Life Science College of Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, P.R. China
| |
Collapse
|
5
|
Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Genet Genomics 2018; 294:287-299. [PMID: 30377773 DOI: 10.1007/s00438-018-1508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The Chinese giant salamander Andrias davidianus is a protected amphibian with high nutritional and economic value. Understanding its sex determination mechanism is important for improving culture techniques and sex control in breeding. However, little information on the characterization of critical genes involved in sex is available. Herein, sequencing of ovary and test produced 40,783,222 and 46,128,902 raw reads, respectively, which were jointly assembled into 80,497 unigenes. Of these, 36,609 unigenes were annotated, of which 8907 were female-biased and 10,385 were male-biased. Several sex-related pathways were observed, including the Wnt signaling pathway. After elevated temperature and estrogen exposure, neomale and neofemale specimens were identified by a female-specific marker for the first time. RT-qPCR analysis showed the expression profile of ten selected sex-biased genes to be exhibited consistently in male and neomale and in female and neofemale, with the exception of the Amh and TfIIIa genes. Results suggested that these genes may play important roles in A. davidianus sex determination and gonad development. This provides a basis for further investigation of the molecular mechanisms of sex determination in amphibians.
Collapse
|
6
|
Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci Rep 2017; 7:4433. [PMID: 28667307 PMCID: PMC5493664 DOI: 10.1038/s41598-017-04938-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 11/27/2022] Open
Abstract
In vertebrates, the primary sex-determining signals that initiate sexual development are remarkably diverse, ranging from complete genetic to environmental cues. However, no sex determination-related genes have been functionally identified in reptiles. Here, we characterized a conserved DM domain gene, Dmrt1, in Chinese soft-shelled turtle Pelodiscus sinensis (P. sinensis), which exhibits ZZ/ZW sex chromosomes. Dmrt1 exhibited early male-specific embryonic expression, preceding the onset of gonadal sex differentiation. The expression of Dmrt1 was induced in ZW embryonic gonads that were masculinized by aromatase inhibitor treatment. Dmrt1 knockdown in ZZ embryos by RNA interference resulted in male to female sex reversal, characterized by obvious feminization of gonads, significant down-regulation of testicular markers Amh and Sox9, and remarkable up-regulation of ovarian regulators, Cyp19a1 and Foxl2. Conversely, ectopic expression of Dmrt1 led to largely masculinized genetic females, production of Amh and Sox9, and a decline in Cyp19a1 and Foxl2. These findings demonstrate that Dmrt1 is both necessary and sufficient to initiate testicular development, thereby acting as an upstream regulator of the male pathway in P. sinensis.
Collapse
|
7
|
Ge C, Ye J, Zhang H, Zhang Y, Sun W, Sang Y, Capel B, Qian G. Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination. Development 2017; 144:2222-2233. [PMID: 28506988 DOI: 10.1242/dev.152033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
The molecular mechanism underlying temperature-dependent sex determination (TSD) has been a long-standing mystery; in particular, the thermosensitive genetic triggers for gonadal sex differentiation are largely unknown. Here, we have characterized a conserved DM domain gene, Dmrt1, in the red-eared slider turtle Trachemys scripta (T. scripta), which exhibits TSD. We found that Dmrt1 has a temperature-dependent, sexually dimorphic expression pattern, preceding gonadal sex differentiation, and is capable of responding rapidly to temperature shifts and aromatase inhibitor treatment. Most importantly, loss- and gain-of-function analyses provide solid evidence that Dmrt1 is both necessary and sufficient to initiate male development in T. scripta Furthermore, the DNA methylation dynamics of the Dmrt1 promoter are tightly correlated with temperature and could mediate the impact of temperature on sex determination. Collectively, our findings demonstrate that Dmrt1 is a candidate master male sex-determining gene in this TSD species, consistent with the idea that DM domain genes are conserved during the evolution of sex determination mechanisms.
Collapse
Affiliation(s)
- Chutian Ge
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Jian Ye
- HangZhou Aquacultural Technique Extending Centre, Hangzhou 310001, China
| | - Haiyan Zhang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Yi Zhang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Yapeng Sang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
8
|
Identification and analysis of the β-catenin1 gene in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 2017; 12:e0176122. [PMID: 28489928 PMCID: PMC5425175 DOI: 10.1371/journal.pone.0176122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
β-catenin is a key signalling molecule in the canonical Wnt pathway, which plays a role in cell adhesion, embryogenesis and sex determination. However, little is known about its function in teleosts. We cloned and characterized the full-length β-catenin1 gene from half-smooth tongue sole (Cynoglossus semilaevis), which was designated CS-β-catenin1. The CS-β-catenin1 cDNA consists of 2,346 nucleotides and encodes a protein with 782 amino acids. Although CS-β-catenin1 was transcribed in the gonads of both sexes, the level was significantly higher in ovaries compared to testes. Furthermore, the mRNA level of CS-β-catenin1 was significantly upregulated at 160 days and constantly increased until 2 years of age. In situ hybridization revealed that CS-β-catenin1 mRNA was mainly localized in oocyte cells, especially in stage I, II and III oocytes. When CS-β-catenin1 expression was inhibited by injection of quercetin in the ovaries, levels of CS-Figla and CS-foxl2 mRNA were significantly down-regulated, and CS-dmrt1 was up-regulated, which suggested that CS-β-catenin1 is a potential upstream gene of CS-Figla and is involved in the development of the ovaries, i.e., folliculogenesis.
Collapse
|
9
|
Díaz-Hernández V, Marmolejo-Valencia A, Merchant-Larios H. Exogenous estradiol alters gonadal growth and timing of temperature sex determination in gonads of sea turtle. Dev Biol 2015; 408:79-89. [DOI: 10.1016/j.ydbio.2015.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 10/22/2022]
|
10
|
Jandegian CM, Deem SL, Bhandari RK, Holliday CM, Nicks D, Rosenfeld CS, Selcer KW, Tillitt DE, Vom Saal FS, Vélez-Rivera V, Yang Y, Holliday DK. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta). Gen Comp Endocrinol 2015; 216:77-85. [PMID: 25863134 DOI: 10.1016/j.ygcen.2015.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/17/2022]
Abstract
Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26°C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20ng/g-egg) or 0.01, 1.0, 100μgBPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated "males", but in none of the control males (n=35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low=30%, BPA-medium=33%, BPA-high=39%), this difference was not significant (p=0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.
Collapse
Affiliation(s)
- Caitlin M Jandegian
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, St. Louis, MO 63110, United States; USGS Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, United States; Bond Life Sciences Center, 1201 E. Rollins St., University of Missouri, Columbia, MO 65201, United States.
| | - Sharon L Deem
- Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, St. Louis, MO 63110, United States; Veterinary Medicine and Surgery, 1600 E. Rollins St., University of Missouri, Columbia, MO 65201, United States.
| | - Ramji K Bhandari
- USGS Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, United States; Biological Sciences, University of Missouri, Columbia, MO 65201, United States.
| | - Casey M Holliday
- Pathology and Anatomical Sciences, School of Medicine, One Hospital Drive, University of Missouri, Columbia, MO 65212, United States.
| | - Diane Nicks
- USGS Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, United States.
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, 1201 E. Rollins St., University of Missouri, Columbia, MO 65201, United States; Biomedical Sciences, 1600 E. Rollins St., University of Missouri, Columbia, MO 65201, United States; Genetics Area Program, University of Missouri, Columbia, MO 65201, United States.
| | - Kyle W Selcer
- Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, United States.
| | - Donald E Tillitt
- USGS Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, United States; Biological Sciences, University of Missouri, Columbia, MO 65201, United States.
| | | | - Vanessa Vélez-Rivera
- USGS Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, United States.
| | - Ying Yang
- Bond Life Sciences Center, 1201 E. Rollins St., University of Missouri, Columbia, MO 65201, United States.
| | - Dawn K Holliday
- Pathology and Anatomical Sciences, School of Medicine, One Hospital Drive, University of Missouri, Columbia, MO 65212, United States; Biology and Environmental Science, Westminster College, 501 Westminster Ave, Fulton, MO 65251, United States.
| |
Collapse
|
11
|
Chassot AA, Gillot I, Chaboissier MC. R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 2014; 148:R97-110. [PMID: 25187620 DOI: 10.1530/rep-14-0177] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sex differentiation is a unique developmental process. Starting from a bipotential gonad, it gives rise to the ovary and the testis, two highly specialized organs that differ morphologically and physiologically despite sharing common reproductive and endocrine functions. This highlights the specific plasticity of the gonadal precursors and the existence of complex antagonistic genetic regulation. Mammalian sex determination is controlled by paternal transmission of the Y-linked gene, sex-determining region Y (SRY). Using mouse models, it has been shown that the main role of Sry is to activate the expression of the transcription factor Sox9; either one of these two genes is necessary and sufficient to allow testicular development through Sertoli cell differentiation. Thus, defects in SRY/Sry and/or SOX9/Sox9 expression result in male-to-female sex reversal of XY individuals. Molecular mechanisms governing ovarian differentiation remained unknown for a long time, until the discovery of the roles of R-spondin1 (RSPO1) and WNT4. In XX individuals, activation of the β-catenin signaling pathway by the secreted proteins RSPO1 and WNT4 is required to allow granulosa cell differentiation and, in turn, ovarian differentiation. Thus, mutations in RSPO1 result in female-to-male sex reversal of XX patients, and mouse models have allowed the identification of genetic cascades activated by RSPO1 and WNT4 to regulate ovarian development. In this review, we will discuss the respective roles of RSPO1, WNT4, and the β-catenin signaling pathway during ovarian differentiation in mice.
Collapse
Affiliation(s)
- Anne-Amandine Chassot
- University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France
| | - Isabelle Gillot
- University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France
| | - Marie-Christine Chaboissier
- University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France University of Nice-Sophia AntipolisParc Valrose, F-06108 Nice, FranceUMR-INSERM1091IBV, F-06108 Nice, France
| |
Collapse
|
12
|
Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Dev Biol 2014; 386:264-71. [DOI: 10.1016/j.ydbio.2013.11.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/19/2023]
|
13
|
Santerre C, Sourdaine P, Adeline B, Martinez AS. Cg-SoxE and Cg-β-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:68-76. [DOI: 10.1016/j.cbpa.2013.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|