1
|
Taylor E, Allen JD, Heyland A. Thyroid hormones reversibly inhibit metamorphic development in ophiuroid larvae. J Exp Biol 2025; 228:JEB249351. [PMID: 39760280 DOI: 10.1242/jeb.249351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids and molluscs. Among echinoderms, TH effects on development as well as underlying signaling mechanisms in early embryogenesis have been documented for echinoid (sea urchin) larvae, but we lack information on TH effects on metamorphic development in most other echinoderm groups, including the ophiuroids (brittle stars). Unexpectedly, we found that THs, principally 3,5,3',5'-tetraiodo-l-thyronine (T4), reversibly inhibit metamorphic development and settlement in the daisy brittle star (Ophiopholis aculeata). Exposure to thiourea, an inhibitor of TH synthesis, accelerated metamorphic development. We showed that these effects were highly stage specific, providing evidence for a developmental point-of-no-return in ophiuroid metamorphic development. Furthermore, starvation of O. aculeata accelerated juvenile morphogenesis and settlement. Starvation also prevented the inhibitory effect of thiourea on TH function, suggesting that TH synthesis may play a role in delaying metamorphosis under conditions of high food availability. These findings provide evidence for a function of TH signaling in ophiuroid metamorphic development and suggest that exogenous TH sources may be involved in the regulation of metamorphic timing in O. aculeata. Together with new evidence of TH involvement in metamorphic development in a range of invertebrates, these findings further emphasize the versatile and central role of endocrine signaling in metamorphosis.
Collapse
Affiliation(s)
- Elias Taylor
- University of Guelph, Integrative Biology, 50 Stone Rd East, Guelph, ON, Canada, N1G 2W1
| | | | - Andreas Heyland
- University of Guelph, Integrative Biology, 50 Stone Rd East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
2
|
Taylor E, Corsini M, Heyland A. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis. EvoDevo 2024; 15:10. [PMID: 39113104 PMCID: PMC11304627 DOI: 10.1186/s13227-024-00226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida). We demonstrate dramatic acceleration of skeletogenesis after TH treatment in three classes of echinoderms: sea urchins, sea stars, and brittle stars (echinoids, asteroids, and ophiuroids). Fluorescently labeled thyroid hormone analogues reveal thyroid hormone binding to cells proximal to regions of skeletogenesis in the gut and juvenile rudiment. We also identify, for the first time, a potential source of thyroxine during gastrulation in sea urchin embryos. Thyroxine-positive cells are present in tip of the archenteron. In addition, we detect thyroid hormone binding to the cell membrane and nucleus during metamorphic development in echinoderms. Immunohistochemistry of phosphorylated MAPK in the presence and absence of TH-binding inhibitors suggests that THs may act via phosphorylation of MAPK (ERK1/2) to accelerate initiation of skeletogenesis in the three echinoderm groups. Together, these results indicate that TH regulation of mesenchyme cell activity via integrin-mediated MAPK signaling may be a conserved mechanism for the regulation of skeletogenesis in echinoderm development. In addition, TH action via a nuclear thyroid hormone receptor may regulate metamorphic development. Our findings shed light on potentially ancient pathways of thyroid hormone activity in echinoids, ophiuroids, and asteroids, or on a signaling system that has been repeatedly co-opted to coordinate metamorphic development in bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada.
| | - Megan Corsini
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| | - Andreas Heyland
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| |
Collapse
|
3
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
4
|
Caplins SA. Plasticity and artificial selection for developmental mode in a poecilogonous sea slug. Ecol Evol 2021; 11:14217-14230. [PMID: 34707850 PMCID: PMC8525145 DOI: 10.1002/ece3.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/12/2022] Open
Abstract
The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk-feeding (lecithotrophic) larvae during the summer, and more planktonic-feeding (planktotrophic) larvae in the winter. I found significant family-level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split-brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg-mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.
Collapse
|
5
|
Edgar A, Byrne M, Wray GA. Embryo microinjection of the lecithotrophic sea urchin Heliocidaris erythrogramma. J Biol Methods 2019; 6:e119. [PMID: 31772951 PMCID: PMC6875645 DOI: 10.14440/jbm.2019.292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/20/2023] Open
Abstract
Microinjection is a common embryological technique used for many types of experiments, including lineage tracing, manipulating gene expression, or genome editing. Injectable reagents include mRNA overexpression, mis-expression, or dominant-negative experiments to examine a gene of interest, a morpholino antisense oligo to prevent translation of an mRNA or spliceoform of interest and CRISPR-Cas9 reagents. Thus, the technique is broadly useful for basic embryological studies, constructing gene regulatory networks, and directly testing hypotheses about cis-regulatory and coding sequence changes underlying the evolution of development. However, the methods for microinjection in typical planktotrophic marine invertebrates may not work well in the highly modified eggs and embryos of lecithotrophic species. This protocol is optimized for the lecithotrophic sea urchin Heliocidaris erythrogramma.
Collapse
Affiliation(s)
- Allison Edgar
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Maria Byrne
- School of Medical Science and Bosch Institute, Department of Anatomy and Histology, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27710, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Armstrong AF, Grosberg RK. The developmental transcriptomes of two sea biscuit species with differing larval types. BMC Genomics 2018; 19:368. [PMID: 29776340 PMCID: PMC5960215 DOI: 10.1186/s12864-018-4768-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Larval developmental patterns are extremely varied both between and within phyla, however the genetic mechanisms leading to this diversification are poorly understood. We assembled and compared the developmental transcriptomes for two sea biscuit species (Echinodermata: Echinoidea) with differing patterns of larval development, to provide a resource for investigating the evolution of alternate life cycles. One species (Clypeaster subdepressus) develops via an obligately feeding larva which metamorphoses 3-4 weeks after fertilization; the other (Clypeaster rosaceus) develops via a rare, intermediate larval type-facultative feeding- and can develop through metamorphosis entirely based on egg provisioning in under one week. RESULTS Overall, the two transcriptomes are highly similar, containing largely orthologous contigs with similar functional annotation. However, we found distinct differences in gene expression patterns between the two species. Larvae from C. rosaceus, the facultative planktotroph, turned genes on at earlier stages and had less differentiation in gene expression between larval stages, whereas, C. subdepressus showed a higher degree of stage-specific gene expression. CONCLUSION This study is the first genetic analysis of a species with facultatively feeding larvae. Our results are consistent with known developmental differences between the larval types and raise the question of whether earlier onset of developmental genes is a key step in the evolution of a reduced larval period. By publishing a transcriptome for this rare, intermediate, larval type, this study adds developmental breadth to the current genetic resources, which will provide a valuable tool for future research on echinoderm development as well as studies on the evolution of development in general.
Collapse
Affiliation(s)
- Anne Frances Armstrong
- Center for Population Biology, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA. .,California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| | - Richard K Grosberg
- Coastal and Marine Sciences Institute, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|