1
|
Yap FC, Wong WL, Chong VC, Bong CW, Lim LHS. Development of the muscular and nervous systems during the larval ontogeny of the stalked barnacle, Octolasmis angulata Aurivillius 1894 (Cirripedia: Thoracicalcerea: Poecilasmatidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101298. [PMID: 37672818 DOI: 10.1016/j.asd.2023.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
The advancements in microscopic techniques have stimulated great interest in the muscular and neural architectures of invertebrates, specifically using muscle and neural structures to infer phylogenetic relationships. Here, we provide the data on the development of the muscular and nervous systems during the larval development of stalked barnacle, Octolasmis angulata using the phalloidin F-actin and immunohistochemical labelling (e.g. acetylated α-tubulin and serotonin) and confocal laser scanning microscopy analysis. All naupliar stages shared the same muscle and neural architectures with only the discrepancy in size. The nauplii have a complex muscle arrangement in their feeding apparatus and naupliar appendages. Most naupliar muscles undergo histolyse during the cyprid metamorphosis. The cyprid muscles form beneath the head shield at the end of nauplius VI. The naupliar and cyprid central nervous systems exhibit the typical tripartite brain comprising the protocerebrum, deutocerebrum and tritocerebrum. The serotonin-like immunoreactivity is mainly found in the naupliar brain, mandibular ganglia, cyprid brain and posterior ganglia. Our study revealed that numerous muscle and neural architectures in the naupliar and cyprids have phylogenetic significance, but future studies on the myoanatomy and neuroanatomy of other barnacle species are necessary to determine the homology of these structures.
Collapse
Affiliation(s)
- Fook-Choy Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia; Graduate School, University of Nottingham Malaysia, Jalan Broga, Selangor, 43500, Semenyih, Malaysia
| | - Wey-Lim Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia.
| | - Ving-Ching Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chui-Wei Bong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lee-Hong Susan Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Fusco G, Minelli A. The Development of Arthropod Segmentation Across the Embryonic/Post-embryonic Divide – An Evolutionary Perspective. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.622482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many arthropods, the appearance of new segments and their differentiation are not completed by the end of embryogenesis but continue, in different form and degree, well after hatching, in some cases up to the last post-embryonic molt. Focusing on the segmentation process currently described as post-embryonic segment addition (or, anamorphosis), we revise here the current knowledge and discuss it in an evolutionary framework which involves data from fossils, comparative morphology of extant taxa and gene expression. We advise that for a better understanding of the developmental changes underlying the evolution of arthropod segmentation, some key concepts should be applied in a critical way. These include the notion of the segment as a body block and the idea that hatching represents a well-defined divide, shared by all arthropods, between two contrasting developmental phases, embryonic vs. post-embryonic. This eventually reveals the complexity of the developmental processes occurring across hatching, which can evolve in different directions and with a different pace, creating the observed vagueness of the embryonic/post-embryonic divide.
Collapse
|
3
|
Sigvardt ZMS, Worsaae K, Savatenalinton S, Kerbl A, Olesen J. Transitions in functional morphology from "large branchiopods" to Cladocera: Video and confocal microscopic studies of Cyclestheria hislopi (Cyclestherida) and Sida crystallina (Cladocera: Ctenopoda). J Morphol 2020; 281:1241-1259. [PMID: 32815589 DOI: 10.1002/jmor.21244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/11/2022]
Abstract
Great diversity is found in morphology and functionality of arthropod appendages, both along the body axis of individual animals and between different life-cycle stages. Despite many branchiopod crustaceans being well known for displaying a relatively simple arrangement of many serially post-maxillary appendages (trunk limbs), this taxon also shows an often unappreciated large variation in appendage morphology. Diplostracan branchiopods exhibit generally a division of labor into locomotory antennae and feeding/filtratory post-maxillary appendages (trunk limbs). We here study the functionality and morphology of the swimming antennae and feeding appendages in clam shrimps and cladocerans and analyze the findings in an evolutionary context (e.g., possible progenetic origin of Cladocera). We focus on Cyclestheria hislopi (Cyclestherida), sister species to Cladocera and exhibiting many "large" branchiopod characters (e.g., many serially similar appendages), and Sida crystallina (Cladocera, Ctenopoda), which likely exhibits plesiomorphic cladoceran traits (e.g., six pairs of serially similar appendages). We combine (semi-)high-speed recordings of behavior with confocal laser scanning microscopy analyses of musculature to infer functionality and homologies of locomotory and filtratory appendages in the two groups. Our morphological study shows that the musculature in all trunk limbs (irrespective of limb size) of both C. hislopi and S. crystallina comprises overall similar muscle groups in largely corresponding arrangements. Some differences between C. hislopi and S. crystallina, such as fewer trunk limbs and antennal segments in the latter, may reflect a progenetic origin of Cladocera. Other differences seem related to the appearance of a specialized type of swimming and feeding in Cladocera, where the anterior locomotory system (antennae) and the posterior feeding system (trunk limbs) have become fully separated functionally from each other. This separation is likely one explanation for the omnipresence of cladocerans, which have conquered both freshwater and marine free water masses and a number of other habitats.
Collapse
Affiliation(s)
- Zandra M S Sigvardt
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexandra Kerbl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|