1
|
Datki Z, Darula Z, Vedelek V, Hunyadi-Gulyas E, Dingmann BJ, Vedelek B, Kalman J, Urban P, Gyenesei A, Galik-Olah Z, Galik B, Sinka R. Biofilm formation initiating rotifer-specific biopolymer and its predicted components. Int J Biol Macromol 2023; 253:127157. [PMID: 37778576 DOI: 10.1016/j.ijbiomac.2023.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary.
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary; Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Eva Hunyadi-Gulyas
- Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Brian J Dingmann
- Department of Math Science and Technology, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, United States of America
| | - Balazs Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Janos Kalman
- Department of Psychiatry, Albert Szent-Gyorgyi Medical School, University of Szeged, Koranyi Fasor 8-10, H-6725 Szeged, Hungary
| | - Peter Urban
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Zita Galik-Olah
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| |
Collapse
|
2
|
Zhong J, Aires R, Tsissios G, Skoufa E, Brandt K, Sandoval-Guzmán T, Aztekin C. Multi-species atlas resolves an axolotl limb development and regeneration paradox. Nat Commun 2023; 14:6346. [PMID: 37816738 PMCID: PMC10564727 DOI: 10.1038/s41467-023-41944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary model organism for regeneration, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first establish that axolotls contain cells with AER characteristics. Further analyses and spatial transcriptomics reveal that axolotl limbs do not fully re-form AER cells during regeneration. Moreover, the axolotl mesoderm displays part of the AER machinery, revealing a program for limb (re)growth. These results clarify the debate about the axolotl AER and the extent to which the limb developmental program is recapitulated during regeneration.
Collapse
Affiliation(s)
- Jixing Zhong
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Rita Aires
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Georgios Tsissios
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Evangelia Skoufa
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Kerstin Brandt
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Flack N, Drown M, Walls C, Pratte J, McLain A, Faulk C. Chromosome-level, nanopore-only genome and allele-specific DNA methylation of Pallas's cat, Otocolobus manul. NAR Genom Bioinform 2023; 5:lqad033. [PMID: 37025970 PMCID: PMC10071556 DOI: 10.1093/nargab/lqad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Pallas's cat, or the manul cat (Otocolobus manul), is a small felid native to the grasslands and steppes of central Asia. Population strongholds in Mongolia and China face growing challenges from climate change, habitat fragmentation, poaching, and other sources. These threats, combined with O. manul's zoo collection popularity and value in evolutionary biology, necessitate improvement of species genomic resources. We used standalone nanopore sequencing to assemble a 2.5 Gb, 61-contig nuclear assembly and 17097 bp mitogenome for O. manul. The primary nuclear assembly had 56× sequencing coverage, a contig N50 of 118 Mb, and a 94.7% BUSCO completeness score for Carnivora-specific genes. High genome collinearity within Felidae permitted alignment-based scaffolding onto the fishing cat (Prionailurus viverrinus) reference genome. Manul contigs spanned all 19 felid chromosomes with an inferred total gap length of less than 400 kilobases. Modified basecalling and variant phasing produced an alternate pseudohaplotype assembly and allele-specific DNA methylation calls; 61 differentially methylated regions were identified between haplotypes. Nearest features included classical imprinted genes, non-coding RNAs, and putative novel imprinted loci. The assembled mitogenome successfully resolved existing discordance between Felinae nuclear and mtDNA phylogenies. All assembly drafts were generated from 158 Gb of sequence using seven minION flow cells.
Collapse
Affiliation(s)
- Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Melissa Drown
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jay Pratte
- Bloomington Parks and Recreation, Miller Park Zoo, Bloomington, IL 61701, USA
| | - Adam McLain
- Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
4
|
Lovely AM, Duerr TJ, Stein DF, Mun ET, Monaghan JR. Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue. Methods Mol Biol 2023; 2562:109-122. [PMID: 36272070 PMCID: PMC10949069 DOI: 10.1007/978-1-0716-2659-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In situ hybridization is a standard procedure for visualizing mRNA transcripts in tissues. The recent adoption of fluorescent probes and new signal amplification methods have facilitated multiplexed RNA imaging in tissue sections and whole tissues. Here we present protocols for multiplexed hybridization chain reaction fluorescence in situ hybridization (HCR-FISH) staining, imaging, cell segmentation, and mRNA quantification in regenerating axolotl tissue sections. We also present a protocol for whole-mount staining and imaging of developing axolotl limbs.
Collapse
Affiliation(s)
- Alex M Lovely
- Department of Biology, Northeastern University, Boston, MA, USA
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA, USA
| | - Timothy J Duerr
- Department of Biology, Northeastern University, Boston, MA, USA
| | - David F Stein
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Evan T Mun
- Department of Biology, Northeastern University, Boston, MA, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA, USA.
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA, USA.
| |
Collapse
|
5
|
del Olmo I, Verdes A, Álvarez‐Campos P. Distinct patterns of gene expression during regeneration and asexual reproduction in the annelid Pristina leidyi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:405-420. [PMID: 35604322 PMCID: PMC9790225 DOI: 10.1002/jez.b.23143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Regeneration, the ability to replace lost body parts, is a widespread phenomenon in the animal kingdom often connected to asexual reproduction or fission, since the only difference between the two appears to be the stimulus that triggers them. Both developmental processes have largely been characterized; however, the molecular toolkit and genetic mechanisms underlying these events remain poorly unexplored. Annelids, in particular the oligochaete Pristina leidyi, provide a good model system to investigate these processes as they show diverse ways to regenerate, and can reproduce asexually through fission under laboratory conditions. Here, we used a comparative transcriptomics approach based on RNA-sequencing and differential gene expression analyses to understand the molecular mechanisms involved in anterior regeneration and asexual reproduction. We found 291 genes upregulated during anterior regeneration, including several regeneration-related genes previously reported in other annelids such as frizzled, paics, and vdra. On the other hand, during asexual reproduction, 130 genes were found upregulated, and unexpectedly, many of them were related to germline development during sexual reproduction. We also found important differences between anterior regeneration and asexual reproduction, with the latter showing a gene expression profile more similar to that of control individuals. Nevertheless, we identified 35 genes that were upregulated in both conditions, many of them related to cell pluripotency, stem cells, and cell proliferation. Overall, our results shed light on the molecular mechanisms that control anterior regeneration and asexual reproduction in annelids and reveal similarities with other animals, suggesting that the genetic machinery controlling these processes is conserved across metazoans.
Collapse
Affiliation(s)
- Irene del Olmo
- Department of Biology (Zoology)Universidad Autónoma de MadridMadridSpain
| | - Aida Verdes
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de MadridMadridSpain
| | | |
Collapse
|
6
|
Scimone ML, Cloutier JK, Maybrun CL, Reddien PW. The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nat Commun 2022; 13:2726. [PMID: 35585061 PMCID: PMC9117669 DOI: 10.1038/s41467-022-30412-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Regeneration often involves the formation of a blastema, an outgrowth or regenerative bud formed at the plane of injury where missing tissues are produced. The mechanisms that trigger blastema formation are therefore fundamental for regeneration. Here, we identify a gene, which we named equinox, that is expressed within hours of injury in the planarian wound epidermis. equinox encodes a predicted secreted protein that is conserved in many animal phyla. Following equinox inhibition, amputated planarians fail to maintain wound-induced gene expression and to subsequently undergo blastema outgrowth. Associated with these defects is an inability to reestablish lost positional information needed for missing tissue specification. Our findings link the planarian wound epidermis, through equinox, to regeneration of positional information and blastema formation, indicating a broad regulatory role of the wound epidermis in diverse regenerative contexts.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Jennifer K Cloutier
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe L Maybrun
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Beck P, Selle B, Madenach L, Jones DTW, Vokuhl C, Gopisetty A, Nabbi A, Brecht IB, Ebinger M, Wegert J, Graf N, Gessler M, Pfister SM, Jäger N. The genomic landscape of pediatric renal cell carcinomas. iScience 2022; 25:104167. [PMID: 35445187 PMCID: PMC9014386 DOI: 10.1016/j.isci.2022.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 12/08/2022] Open
Abstract
Pediatric renal cell carcinomas (RCC) differ from their adult counterparts not only in histologic subtypes but also in clinical characteristics and outcome. However, the underlying biology is still largely unclear. For this reason, we performed whole-exome and transcriptome sequencing analyses on a cohort of 25 pediatric RCC patients with various histologic subtypes, including 10 MiT family translocation (MiT) and 10 papillary RCCs. In this cohort of pediatric RCC, we find only limited genomic overlap with adult RCC, even within the same histologic subtype. Recurrent somatic mutations in genes not previously reported in RCC were detected, such as in CCDC168, PLEKHA1, VWF, and MAP3K9. Our papillary pediatric RCCs, which represent the largest cohort to date with comprehensive molecular profiling in this age group, appeared as a distinct genomic subtype differing in terms of gene mutations and gene expression patterns not only from MiT-RCC but also from their adult counterparts. WES and RNA-seq of 25 pediatric RCCs with various histologic subtypes Detected only limited genomic overlap with adult RCC Revealed recurrent somatic mutations in genes not previously reported in RCC Discovery of a CRK-PITPNA fusion gene in a pediatric papillary RCC
Collapse
Affiliation(s)
- Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Barbara Selle
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lukas Madenach
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Apurva Gopisetty
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology and Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
8
|
Stsiapanava A, Xu C, Nishio S, Han L, Yamakawa N, Carroni M, Tunyasuvunakool K, Jumper J, de Sanctis D, Wu B, Jovine L. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat Struct Mol Biol 2022; 29:190-193. [PMID: 35273390 PMCID: PMC8930769 DOI: 10.1038/s41594-022-00729-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy. AlphaFold2 predictions, X-ray crystallography and cryo-EM analyses reveal how related human glycoproteins GP2 and uromodulin catch pathogenic bacteria by presenting a high-mannose glycan that acts as a decoy for fimbrial adhesin FimH.
Collapse
Affiliation(s)
- Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nao Yamakawa
- US 41-UMS 2014-PLBS, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
10
|
Leigh ND, Pereira CF. Reprogramming Stars #5: Regeneration, a Natural Reprogramming Process-An Interview with Dr. Nicholas Leigh. Cell Reprogram 2022; 24:2-8. [PMID: 35133883 DOI: 10.1089/cell.2022.29055.nl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Feng Z, Liu Z, Peng K, Wu W. A Prognostic Model Based on Nine DNA Methylation-Driven Genes Predicts Overall Survival for Colorectal Cancer. Front Genet 2022; 12:779383. [PMID: 35126454 PMCID: PMC8814658 DOI: 10.3389/fgene.2021.779383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) is the third most frequently diagnosed malignancy and the fourth leading cause of cancer-related death among common tumors in the world. We aimed to establish and validate a risk assessment model to predict overall survival (OS) for the CRC patients. Methods: DNA methylation-driven genes were identified by integrating DNA methylation profile and transcriptome data from The Cancer Genome Atlas (TCGA) CRC cohort. Then, a risk score model was built based on LASSO, univariable Cox and multivariable Cox regression analysis. After analyzing the clinicopathological factors, a nomogram was constructed and assessed. Another cohort from GEO was used for external validation. Afterward, the molecular and immune characteristics in the two risk score groups were analyzed. Results: In total, 705 methylation-driven genes were identified. Based on the LASSO and Cox regression analyses, nine genes, i.e., LINC01555, GSTM1, HSPA1A, VWDE, MAGEA12, ARHGAP, PTPRD, ABHD12B and TMEM88, were selected for the development of a risk score model. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better OS (P = 2e-08). The verification performed in subgroups demonstrated the validity of the model. Then, we established an OS-associated nomogram that included the risk score and significant clinicopathological factors. The concordance index of the nomogram was 0.81. A comprehensive molecular and immune characteristics analysis showed that the high-risk group was associated with tumor invasion, infiltration of immune cells executing pro-tumor suppression (such as myeloid-derived suppressor cells, regulatory T cells, immature dendritic cells) and higher expression of common inhibitory checkpoint molecules (ICPs). Conclusion: Our nine-gene associated risk assessment model is a promising signature to distinguish the prognosis for CRC patients. It is expected to serve as a predictive tool with high sensitivity and specificity for individualized prediction of OS in the patients with CRC.
Collapse
Affiliation(s)
| | | | | | - Wei Wu
- *Correspondence: Kangsheng Peng, ; Wei Wu,
| |
Collapse
|
12
|
Goodwin AT, Karadoğan D, De Santis MM, Alsafadi HN, Hawthorne I, Bradicich M, Siciliano M, Şahin Duyar S, Targa A, Meszaros M, Fanaridis M, Gille T, Keir HR, Moor CC, Lichtblau M, Ubags ND, Cruz J. Highlights of the ERS Lung Science Conference and Sleep and Breathing Conference 2021 and the new ECMC members. Breathe (Sheff) 2022; 17:210080. [PMID: 35035550 PMCID: PMC8753630 DOI: 10.1183/20734735.0080-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 11/05/2022] Open
Abstract
This article provides a brief description of some of the most remarkable sessions of the @EuroRespSoc Lung Science Conference and the Sleep and Breathing Conference 2021 and presents the new incoming members of the ECMC (@EarlyCareerERS) https://bit.ly/2RSDP40.
Collapse
Affiliation(s)
- Amanda T Goodwin
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Dilek Karadoğan
- Dept of Chest Diseases, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey.,These authors contributed equally
| | - Martina M De Santis
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.,These authors contributed equally
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Stem Cell Centre, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,These authors contributed equally
| | - Ian Hawthorne
- Cellular Immunology Laboratory, Dept of Biology, Maynooth University, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland.,These authors contributed equally
| | - Matteo Bradicich
- Dept of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland.,These authors contributed equally
| | - Matteo Siciliano
- IRCCS Fondazione Policlinico Universitario A Gemelli - Università Cattolica del Sacro Cuore, UOC Pneumologia, Rome, Italy.,These authors contributed equally
| | - Sezgi Şahin Duyar
- Pulmonology, University of Health Sciences Atatürk Chest Diseases and Thoracic Surgery Education and Research Hospital, Ankara, Turkey.,These authors contributed equally
| | - Adriano Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Diseases Network Research Centre on Respiratory Diseases (CIBERES), Madrid, Spain.,These authors contributed equally
| | - Martina Meszaros
- Dept of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland.,These authors contributed equally
| | - Michail Fanaridis
- Sleep Disorders Unit, Dept of Respiratory Medicine, Medical School, University of Crete, Heraklion, Greece.,These authors contributed equally
| | - Thomas Gille
- Inserm UMR 1272 "Hypoxia & the Lung", UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord (USPN), Bobigny, France.,Physiologie et Explorations Fonctionnelles, Hôpitaux Universitaires de Seine-Saint-Denis (HUPSSD) Avicenne/Jean Verdier/René Muret, Assistance Publique - Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Catharina C Moor
- Dept of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Joana Cruz
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences (ESSLei), Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
13
|
Iwata K, Kawarabayashi K, Yoshizaki K, Tian T, Saito K, Sugimoto A, Kurogoushi R, Yamada A, Yamamoto A, Kudo Y, Ishimaru N, Fukumoto S, Iwamoto T. von Willebrand factor D and EGF domains regulate ameloblast differentiation and enamel formation. J Cell Physiol 2021; 237:1964-1979. [DOI: 10.1002/jcp.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tian Tian
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Kan Saito
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Aya Yamada
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Yasuei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Satoshi Fukumoto
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
14
|
Tellez-Garcia AA, Álvarez-Martínez R, López-Martínez JM, Arellano-Carbajal F. Transcriptome analysis during early regeneration of Lumbriculus variegatus. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
A cross-species analysis of systemic mediators of repair and complex tissue regeneration. NPJ Regen Med 2021; 6:21. [PMID: 33795702 PMCID: PMC8016993 DOI: 10.1038/s41536-021-00130-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration is an elegant and complex process informed by both local and long-range signals. Many current studies on regeneration are largely limited to investigations of local modulators within a canonical cohort of model organisms. Enhanced genetic tools increasingly enable precise temporal and spatial perturbations within these model regenerators, and these have primarily been applied to cells within the local injury site. Meanwhile, many aspects of broader spatial regulators of regeneration have not yet been examined with the same level of scrutiny. Recent studies have shed important insight into the significant effects of environmental cues and circulating factors on the regenerative process. These observations highlight that consideration of more systemic and possibly more broadly acting cues will also be critical to fully understand complex tissue regeneration. In this review, we explore the ways in which systemic cues and circulating factors affect the initiation of regeneration, the regenerative process, and its outcome. As this is a broad topic, we conceptually divide the factors based on their initial input as either external cues (for example, starvation and light/dark cycle) or internal cues (for example, hormones); however, all of these inputs ultimately lead to internal responses. We consider studies performed in a diverse set of organisms, including vertebrates and invertebrates. Through analysis of systemic mediators of regeneration, we argue that increased investigation of these "systemic factors" could reveal novel insights that may pave the way for a diverse set of therapeutic avenues.
Collapse
|
16
|
Verissimo KM, Perez LN, Dragalzew AC, Senevirathne G, Darnet S, Barroso Mendes WR, Ariel Dos Santos Neves C, Monteiro Dos Santos E, Nazare de Sousa Moraes C, Elewa A, Shubin N, Fröbisch NB, de Freitas Sousa J, Schneider I. Salamander-like tail regeneration in the West African lungfish. Proc Biol Sci 2020; 287:20192939. [PMID: 32933441 DOI: 10.1098/rspb.2019.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Salamanders, frog tadpoles and diverse lizards have the remarkable ability to regenerate tails. Palaeontological data suggest that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here, we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens, a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via the formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast with lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic programme deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signalling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that the developmental processes and genetic programme of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.
Collapse
Affiliation(s)
- Kellen Matos Verissimo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Louise Neiva Perez
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Aline Cutrim Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | | | | | | | | | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Nadia Belinda Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | | | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|