1
|
Sultan N, Jayash SN. In Vivo Evaluation of Regenerative Osteogenic Potential Using a Human Demineralized Dentin Matrix for Dental Application. Dent J (Basel) 2024; 12:76. [PMID: 38534300 DOI: 10.3390/dj12030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The use of a demineralized dentin matrix (DDM) has garnered substantial importance in dentistry. This study was carried out to evaluate the osteoinductive performance of DDM in comparison to nano-hydroxyapatite (n-HA) on calvarial critical-sized bone defect. METHODS Two critical-sized defects (CSDs) were bilaterally trephined in the calvarium of sixteen healthy white rabbits. The rabbits were categorized into four groups: in group 1, the defect was left empty; in group 2, defects were filled with sodium alginate (SA) hydrogel as a sole material; in group 3, defects were treated with nano-hydroxyapatite hydrogel (NHH); in group 4, defects were treated using demineralized dentin matrix hydrogel (DDMH). Histological and immunohistochemical analyses were carried out to evaluate the total areas of newly formed bone. RESULTS The DDMH group showed that new woven bone tissue progressively bridged the defect area while there was no bone in the control group. Collagen expression was significantly different in the DDMH- and NHH-treated groups compared to in the SA group at 4 and 8 weeks (p < 0.01). OCN expression was significantly higher in the DDMH group in comparison to in the NHH or SA groups at 8 weeks (p < 0.01). CONCLUSIONS The DDMH group exhibited significantly higher levels of new bone formation compared to the NHH group at both 4 and 8 weeks post-surgically.
Collapse
Affiliation(s)
- Nessma Sultan
- Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
- Oral Biology and Dental Morphology, Faculty of Dentistry, Mansoura National University, Gamasa 7731168, Egypt
| | | |
Collapse
|
2
|
Korsch M, Alt KW, Mock FR. Frozen Stored Teeth: Autogenous Dentin as an Alternative Augmentation Material in Dentistry. Bioengineering (Basel) 2023; 10:bioengineering10040456. [PMID: 37106643 PMCID: PMC10135693 DOI: 10.3390/bioengineering10040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Tooth Shell Technique (TST) with the use of autologous dentin has proven to be a suitable method of grafting in the context of lateral ridge augmentation. This present feasibility study aimed to retrospectively evaluate the preservation by lyophilization of processed dentin. Thus, the frozen stored processed dentin matrix (FST: 19 patients with 26 implants) was re-examined with that of processed teeth used immediately after extraction (IUT: 23 patients with 32 implants). Parameters of biological complications, horizontal hard tissue loss, osseointegration, and buccal lamella integrity were used for evaluation. For complications, the observation period was 5 months. Only one graft was lost (IUT group). In the area of minor complications, without the loss of an implant or augmentation, there were two cases of wound dehiscence and one case with inflammation and suppuration (IUT: n = 3, FST: n = 0). Osseointegration and integrity of the buccal lamella were present in all implants without exception. Statistically, there was no difference between the groups studied for the mean resorption of the crestal width and the buccal lamella. Results of this study show that prepared autologous dentin preserved with a conventional freezer had no disadvantage compared to immediately use autologous dentin in terms of complications and graft resorption in the context of TST.
Collapse
Affiliation(s)
- Michael Korsch
- Dental Academy for Continuing Professional Development, Karlsruhe, Lorenzstrasse 7, 76135 Karlsruhe, Germany
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421 Homburg, Germany
- Private Practice, Center for Implantology and Oral Surgery, Berliner Str. 41, 69120 Heidelberg, Germany
| | - Kurt Werner Alt
- Center of Natural and Cultural Human History, Danube Private University, Steiner Landstrasse 124, 3500 Krems-Stein, Austria
| | - Frederick Reza Mock
- Private Practice, Practice for Dentistry, Oral Surgery and Implantology, Marienstrasse 9, 66287 Quierschied, Germany
- Private Practice, 32 Route de Luxembourg, 6130 Junglinster, Luxembourg
| |
Collapse
|
3
|
Elkady E, Nour El-den R, Atiba A, Yasser S. Comparing the effect of demineralized versus hybrid dentin matrices on inducing bone regeneration in New Zealand white rabbits' Mandibular defect. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101346. [PMID: 36470537 DOI: 10.1016/j.jormas.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to compare the effect of using demineralized dentin matrix (DDM) versus hybrid dentin matrices; Demineralized and undemineralized dentin particles (DDM +UDDM) on inducing bone regeneration in mandibular defects. DESIGN The study was conducted on fifty adult New Zealand rabbits, twenty for preparation of experimental materials and thirty for surgical procedures. They were randomly assigned into 3 equal groups as follow one control group: no treatment and two experimental groups including demineralized group: treated with DDM only; and hybrid group: treated with a hybrid of (50% DDM+50% UDD). A rounded critical size defect (10 mm in diameter- 5 mm in depth) was created in the body of mandible. After 3- and 6-weeks post-surgery, the bone regeneration was evaluated by light microscope, scanning electron microscope and histomorphometry. RESULTS Histological, histomorphometrical observation and SEM revealed that both dentin matrices had largely resorbed and induced new bone formation at both experimental groups compared to the control group, with statistically higher percentage of new bone formation in the hybrid group. CONCLUSION We concluded that although both dentin matrices induced new bone formation; however, hybrid dentin matrix yielded better results compared to DDM group.
Collapse
Affiliation(s)
- Eman Elkady
- Oral Biology Department, Faculty of Dentistry, Tanta university, Egypt; Demonstrator of Oral Biology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Ragia Nour El-den
- Oral Biology Department, Faculty of Dentistry, Tanta university, Egypt; Professor of Oral Biology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Ayman Atiba
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Professor of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University
| | - Sarah Yasser
- Oral Biology Department, Faculty of Dentistry, Tanta university, Egypt; Assistant Professor of Oral Biology, Faculty of Dentistry, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Kamal M, Al‐Obaidly S, Lethaus B, Bartella AK. A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies. Clin Exp Dent Res 2022; 8:1331-1340. [PMID: 35933723 PMCID: PMC9760144 DOI: 10.1002/cre2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Bone grafting is commonly used to reconstruct skeletal defects in the craniofacial region. Several bone augmentation models have been developed to evaluate bone formation using novel bone substitute materials. The aim of this study was to evaluate a surgical animal model for establishing a three-dimensional (3D) grafting environment in the animal's mandibular ramus for bone augmentation using the osseous shell technique, as in humans. MATERIALS AND METHODS Osteological survey of New Zealand white (NZW) rabbit skull (Oryctolagus cuniculus): Initial osteological and imaging surveys were performed on a postmortem skull for a feasibility assessment of the surgical procedure. Postmortem pilot surgery and cone beam computed tomography imaging: a 3D osseous defect was created in the mandibular ramus through a submandibular incision. The osseous shell plates were stabilized with osteosynthesis fixation screws, and defects were filled with particular bone grafting material. In vivo surgical procedure: surgeries were conducted in four 8-week-old NZW rabbits utilizing two osseous shell materials: xenogeneic human cortical plates and autogenous rabbit cortical plates. The created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone formation after 12 weeks using histological and cone beam computed tomography imaging analysis. RESULTS Clinical analysis 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone formation. CONCLUSIONS The proposed animal model is a promising model with the potential to study various bone grafting materials for augmentation in the mandibular ramus using the osseous shell technique without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging.
Collapse
Affiliation(s)
- Mohammad Kamal
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences CenterKuwait UniversityJabryiaKuwait
| | - Sara Al‐Obaidly
- Kuwait Dental AdministrationKuwait Ministry of HealthSafatKuwait
| | - Bernd Lethaus
- Department of Oral and Maxillofacial SurgeryLeipzig University HospitalLeipzigGermany
| | - Alexander K. Bartella
- Department of Oral and Maxillofacial SurgeryLeipzig University HospitalLeipzigGermany
| |
Collapse
|
5
|
Retrospective Study on Tooth Shell Technique Using Endodontically Treated Teeth in Lateral Ridge Augmentation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autogenous dentin has been reported to be a suitable grafting material for certain indications. The purpose of this study was to assess the feasibility of using endodontically treated teeth for this application. In the present retrospective study, one-stage augmentation of lateral ridge defects with a dentin shell and particulate (tooth shell technique (TST)) either obtained from endodontically treated teeth (ETT, 17 patients with 21 implants) or non-endodontically treated teeth (NETT, 17 patients with 24 implants) were analyzed. Follow-up was conducted 3 months after augmentation. The target parameters were biological complications, horizontal hard tissue loss, osseointegration, and the integrity of the buccal lamella. Only minor complications occurred in three implants from three patients, including two cases of wound dehiscence (one each in ETT and NETT) and a localized three-walled defect in the NETT group, which was solved by re-augmentation. All the implants were osseointegrated and the integrity of the buccal lamella was preserved. The mean difference of the resorption of the crestal width and the buccal lamella did not differ statistically between the two groups. As TST using ETT showed, the results comparable to those of NETT dentin from endodontically treated teeth can be safely applied with predictable results for this grafting technique.
Collapse
|
6
|
Integration of Dental Implants in Conjunction with EDTA-Conditioned Dentin Grafts: An Experimental Study. Dent J (Basel) 2021; 9:dj9060063. [PMID: 34206029 PMCID: PMC8228615 DOI: 10.3390/dj9060063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study was undertaken to investigate the integration of titanium micro-implants installed in conjunction with previously dentin-grafted areas and to study the morphological appearance, mineral content, and healing pattern of xenogenic EDTA-conditioned dentin blocks and granules grafted to cavities in the tibial bone of rabbits. Demineralized and non-demineralized dentin blocks and granules from human premolars were implanted into cavities prepared on the lateral aspects of the tibias of rabbits. After a healing period of six months, micro-implants were installed at each surgical site. Histological examinations were carried out after 24 weeks. Characterization of the EDTA-conditioned dentin blocks was performed by means of light microscopy, dental X-rays, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). No implants were found to be integrated in direct contact with the dentin particles or blocks. On the EDTA-conditioned dentin surface, the organic marker elements C and N dominated, as revealed by EDX. The hydroxyapatite constituents Ca and P were almost absent on the dentin surface. No statistically significant difference was observed between the EDTA-conditioned and non-demineralized dentin, as revealed by BIC and BA. The bone-inductive capacity of the dentin material seemed limited, although demineralization by means of EDTA indicated higher BIC and BA values in conjunction with the installed implants in the area. A 12 h EDTA treatment did not fully decalcify the grafts, as revealed by X-ray analysis.
Collapse
|
7
|
Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063174. [PMID: 33808616 PMCID: PMC8003557 DOI: 10.3390/ijerph18063174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
In the literature, autogenous dentin is considered a possible alternative to bone substitute materials and autologous bone for certain indications. The aim of this proof-of-concept study was to use autogenous dentin for lateral ridge augmentation. In the present retrospective study, autogenous dentin slices were obtained from teeth and used for the reconstruction of lateral ridge defects (tooth-shell technique (TST): 28 patients (15 females, 13 males) with 34 regions and 38 implants). The bone-shell technique (BST) according to Khoury (31 patients (16 females, 15 males) with 32 regions and 41 implants) on autogenous bone served as the control. Implants were placed simultaneously in both cases. Follow-up was made 3 months after implantation. Target parameters during this period were clinical complications, horizontal hard tissue loss, osseointegration, and integrity of the buccal lamella. The prosthetic restoration with a fixed denture was carried out after 5 months. The total observation period was 5 months. A total of seven complications occurred. Of these, three implants were affected by wound dehiscences (TST: 1, BST: 2) and four by inflammations (TST: 0, BST: 4). There were no significant differences between the two groups in terms of the total number of complications. One implant with TST exhibited a horizontal hard tissue loss of 1 mm and one with BST of 0.5 mm. Other implants were not affected by hard tissue loss. There were no significant differences between the two groups. Integrity of the buccal lamella was preserved in all implants. All implants were completely osseointegrated in TST and BST. All implants could be prosthetically restored with a fixed denture 5 months after augmentation. TST showed results comparable to those of the BST. Dentin can therefore serve as an alternative material to avoid bone harvesting procedures and thus reduce postoperative discomfort of patients.
Collapse
|
8
|
Arabadzhiev I, Maurer P, Stevao E. Particulated wisdom teeth as an autologous bone substitute for grafting/filling material in bone defects: Case Report. J Clin Exp Dent 2020; 12:e424-e428. [PMID: 32382393 PMCID: PMC7195678 DOI: 10.4317/jced.56547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 11/05/2022] Open
Abstract
Introduction Bone augmentation material using permanent teeth are confirmed in many articles to provide good histological and clinical results. Advances in osteoconduction and osteoinduction, low cost of material, no risk of disease transmission and elimination of foreign body reaction are important aspects not only to the clinician but to patient as well. Many techniques and devices to obtain graft material for bone augmentation out of teeth are found in the literature. Material and Methods The wisdom teeth crush technique developed in our office and described in this case report is simple and no specific devices for teeth grinding were used. The graft material was obtained from impacted intact wisdom teeth without chemical conditioning of the particles with preservation of the dental pulp and the cells found in it. This study presents crushed autologous maxillary wisdom tooth as filling material in two bone defects in premaxilla caused by cysts removal. Results The clinical results and Panoramic X-ray evaluation at three months postoperatively were very promising. Conclusions Although further clinical researches are necessary to evaluate this substitutive for bone augmentation technique, the authors believe it can be safely used by oral/maxillofacial surgeons. Key words:Particulated wisdom tooth, autologous augmentation, bone substitutes, wisdom teeth crush technique.
Collapse
Affiliation(s)
- Ivan Arabadzhiev
- Master of Dental Medicine; Master of Public Healthcare and Healthcare Management; Resident in Oral Surgery at Praxisklinik Prof. Dr. Dr. Peter Maurer in Sankt Wendel - Saarland, Germany
| | - Peter Maurer
- Medical Doctor; Dental Doctor; OMF surgeon at Praxisklinik Prof. Dr. Dr. Maurer in Sankt Wendel - Saarland, Germany
| | - Eber Stevao
- Doctor of Dental Surgery, OMF surgeon, PhD in OMFS, PostDoctoral at Baylor University Medical Center and Baylor College of Dentistry, Dallas - TX, USA, Senior OMF Consultant surgeon at Stevao & Sons Consulting Limited
| |
Collapse
|
9
|
Bakhtiar H, Mazidi A, Mohammadi-Asl S, Hasannia S, Ellini MR, Pezeshki-Modaress M, Ostad SN, Galler K, Azarpazhooh A, Kishen A. Potential of Treated Dentin Matrix Xenograft for Dentin-Pulp Tissue Engineering. J Endod 2020; 46:57-64.e1. [DOI: 10.1016/j.joen.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022]
|
10
|
Kamal M, Andersson L, Al-Asfour A, Bartella AK, Gremse F, Rosenhain S, Gabato S, Hölzle F, Kessler P, Lethaus B. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ
formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture. J Biomed Mater Res B Appl Biomater 2018; 107:773-782. [DOI: 10.1002/jbm.b.34171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/23/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Mohammad Kamal
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology; Maastricht University Medical Center; Maastricht The Netherlands
- Department of Oral and Maxillofacial Surgery; RWTH Aachen University; Aachen Germany
| | - Lars Andersson
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center; Kuwait University; Safat Kuwait
| | - Adel Al-Asfour
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center; Kuwait University; Safat Kuwait
| | - Alexander K. Bartella
- Department of Oral and Maxillofacial Surgery; RWTH Aachen University; Aachen Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Stefanie Rosenhain
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Severino Gabato
- Animal Resources Centre, Health Sciences Center; Kuwait University; Safat Kuwait
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery; RWTH Aachen University; Aachen Germany
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology; Maastricht University Medical Center; Maastricht The Netherlands
| | - Bernd Lethaus
- Department of Oral and Maxillofacial Surgery; RWTH Aachen University; Aachen Germany
| |
Collapse
|
11
|
Abstract
PURPOSE The present study was undertaken to evaluate the healing pattern of xenogenic demineralized dentin onlay grafts in comparison with autogenous bone grafts to the rabbit tibia. MATERIAL AND METHODS Eight 6-month-old New Zealand male rabbits were used in the experiments. Standardized sized dentin blocks from human premolars and similar autogenous bone blocks harvested from tibia were grafted as onlay blocks on each tibia (n = 8 × 2). All animals were killed after a healing period of 12 weeks. RESULTS Healing was uneventful for all animals. In general, both the dentin and bone block grafts were fused to the bone, resorbed, and replaced by bone and connective tissue to a varying degree. Both types of grafts were still present after 12 weeks, on an average to approximately one third of the original sizes. Resorption cavities could be seen in the dentin with bone formation. Zones of osseous replacement resorption of the dentin could be noted. In both graft types, higher rate of bone formation was seen at the interface between graft and recipient site. CONCLUSION Demineralized xenogenic dentin onlay grafts showed similar resorption characteristics as autogenous bone onlay grafts, being resorbed in a similar rate during 12 weeks. New bone formation occurred mainly in terms of replacement resorption in the interface between dentin/bone graft and native bone.
Collapse
|
12
|
Kamal M, Andersson L, Tolba R, Al-Asfour A, Bartella AK, Gremse F, Rosenhain S, Hölzle F, Kessler P, Lethaus B. Bone regeneration using composite non-demineralized xenogenic dentin with beta-tricalcium phosphate in experimental alveolar cleft repair in a rabbit model. J Transl Med 2017; 15:263. [PMID: 29274638 PMCID: PMC5742260 DOI: 10.1186/s12967-017-1369-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 01/24/2023] Open
Abstract
Background Alveolar cleft repair is performed via bone grafting procedure to restore the dental arch continuity. A suitable bone substitute materials should possess osteoinductive and osteoconductive properties, to promote new bone formation, along with a slowly resorbable scaffold that is subsequently replaced with functionally viable bone. Calcium phosphate biomaterials have long proved their efficacy as bone replacement materials. Dentin in several forms has also demonstrated its possibility to be used as bone graft replacement material in several studies. The purpose of this study was to evaluate bone regeneration pattern and quantify bone formation after grafting pre-established experimental alveolar clefts defects model in rabbits using composite xenogenic dentin and β-TCP in comparison to β-TCP alone. Methods Unilateral alveolar cleft defects were created in 16 New Zealand rabbits according to previously described methodology. Alveolar clefts were allowed 8 weeks healing period. 8 defects were filled with β-TCP, whereas 8 defects filled with composite xenogenic dentin with β-TCP. Bone regeneration of the healed defects was compared at the 8 weeks after intervention. Quantification of bone formation was analyzed using micro-computed tomography (µCT) and histomorphometric analysis. Results µCT and histomorphometric analysis revealed that defects filled with composite dentin/β-TCP showed statistically higher bone volume fraction, bone mineral density and percentage residual graft volume when compared to β-TCP alone. An improved surgical handling of the composite dentin/β-TCP graft was also noted. Conclusions Composite xenogenic dentin/β-TCP putty expresses enhanced bone regeneration compared to β-TCP alone in the reconstruction of rabbit alveolar clefts defects.
Collapse
Affiliation(s)
- Mohammad Kamal
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands. .,Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Lars Andersson
- Department of Surgical Sciences, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Adel Al-Asfour
- Department of Surgical Sciences, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Alexander K Bartella
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefanie Rosenhain
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands
| | - Bernd Lethaus
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
13
|
Valdec S, Pasic P, Soltermann A, Thoma D, Stadlinger B, Rücker M. Alveolar ridge preservation with autologous particulated dentin-a case series. Int J Implant Dent 2017; 3:12. [PMID: 28361377 PMCID: PMC5374084 DOI: 10.1186/s40729-017-0071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
Introduction Ridge preservation can be performed with autologous bone, alloplastic bone substitute material or a combination of both. Dentin is similar to bone in its chemical composition. In its use as bone substitute material, it undergoes a remodelling process and transforms to bone. The presented case report introduces a technique in which the extraction socket is augmented with autologous, particulated dentin. Material and methods The fractured, non-savable mesial incisor of the upper jaw was carefully extracted in axial direction. After the extraction, the tooth was cleared from remaining periodontal tissue. The vital pulp tissue or a root canal filling, enamel and cementum were also removed. Following the particulation of the remaining dentin in a bone mill, the dentin particles were immediately filled orthotope into the alveolar socket. The soft tissue closure was performed with a free gingival graft of the palate. Results After an observation period of 4 months, an implant was placed in the augmented area, which osseointegrated successfully and could be restored prosthodontically in the following. The results of this method showed a functional and aesthetic success. Conclusion The pre-implantological, autologous ridge preservation with dentin could be performed successfully. For the establishment of dentin as augmentation material for jaw augmentation procedures, a prospective, clinical trial is now necessary.
Collapse
Affiliation(s)
- Silvio Valdec
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, University Hospital Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland.
| | - Pavla Pasic
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, University Hospital Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, University Hospital Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland
| | - Martin Rücker
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, University Hospital Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland
| |
Collapse
|
14
|
Kamal M, Andersson L, Tolba R, Bartella A, Gremse F, Hölzle F, Kessler P, Lethaus B. A rabbit model for experimental alveolar cleft grafting. J Transl Med 2017; 15:50. [PMID: 28235419 PMCID: PMC5326493 DOI: 10.1186/s12967-017-1155-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
Objectives The purpose of the present study was to develop an animal model for creating alveolar cleft defects with properly simulated clinical defect environment for tissue-engineered bone-substitute materials testing without compromising the health of the animal. Cleft creation surgery was aimed at creating a complete alveolar cleft with a wide bone defect with an epithelial lining (oral mucosa) overlying the cleft defect. Methods A postmortem skull of a New Zealand White (NZW) rabbit skull (Oryctolagus cuniculus) underwent an osteological and imaging survey. A pilot postmortem surgery was conducted to confirm the feasability of a surgical procedure and the defect was also radiologically confirmed and illustrated with micro-computed tomography. Then, a surgical in vivo model was tested and evaluated in 16 (n = 16) 8-week-old NZW rabbits to create in vivo alveolar cleft creation surgery. Results Clinical examination and imaging analysis 8 weeks after cleft creation surgery revealed the establishment of a wide skeletal defect extending to the nasal mucosa simulating alveolar clefts in all of the rabbits. Conclusions Our surgical technique was successful in creating a sizable and predictable model for bone grafting material testing. The model allows for simulating the cleft site environment and can be used to evaluate various bone grafting materials in regard to efficacy of osteogenesis and healing potential without compromising the health of the animal.
Collapse
Affiliation(s)
- Mohammad Kamal
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands. .,Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Lars Andersson
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alexander Bartella
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands
| | - Bernd Lethaus
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
15
|
Um IW, Cho WJ. Discussion: Effects of fresh mineralized dentin and cementum on socket healing: a preliminary study in dogs. J Korean Assoc Oral Maxillofac Surg 2015; 41:124. [PMID: 26131428 PMCID: PMC4483525 DOI: 10.5125/jkaoms.2015.41.3.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- In-Woong Um
- R&D Institute, Korea Tooth Bank, Seoul, Korea
| | - Woo-Jin Cho
- R&D Institute, Korea Tooth Bank, Seoul, Korea
| |
Collapse
|
16
|
Al-Asfour A, Farzad P, Andersson L, Joseph B, Dahlin C. Host tissue reactions of non-demineralized autogenic and xenogenic dentin blocks implanted in a non-osteogenic environment. An experimental study in rabbits. Dent Traumatol 2013; 30:198-203. [PMID: 23991864 DOI: 10.1111/edt.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
Abstract
Dentoalveolar ankylosis with osseous replacement is often seen after replantation of avulsed teeth, and this process may be used for preservation of alveolar crests after trauma. Its exact mechanisms with regard to osteoinductive properties are not yet fully understood and need to be systematically investigated. Dentin can possibly act as a slow-releasing carrier of bone morphogenic proteins (BMP), and this property of dentin has been proposed to be used as an alternative or supplement to bone grafting in the maxillofacial region. We aimed to initially asses host tissue reactions to dentin by implanting dentin blocks of autogenic and xenogenic human origin in rabbit connective tissue of the abdominal wall and femoral muscle. Animals were sacrificed after a period of 3 months, and histological processing, sectioning and examinations were carried out. Bone formation, cell counts and thickness of capsule surrounding the grafts were evaluated. Only minor signs of heterotopic bone formation were seen. There were no significant differences between autografts and xenografts or grafts implanted in connective tissue or muscle with regards to tissue reactions except for a significant difference (P = 0.018) in findings of more local inflammatory cells in relation to grafts placed in connective tissue in the autograft group. We conclude that during the time frame of this study, non-demineralized dentin, whether autogenous or xenogenic did not have the potential to induce bone formation when implanted in non-osteogenic areas such as the abdominal wall and abdominal muscle of rabbits.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait
| | | | | | | | | |
Collapse
|