1
|
Kaiser R, Gold C, Joppich M, Loew Q, Akhalkatsi A, Mueller TT, Offensperger F, Droste Zu Senden A, Popp O, di Fina L, Knottenberg V, Martinez-Navarro A, Eivers L, Anjum A, Escaig R, Bruns N, Briem E, Dewender R, Muraly A, Akgöl S, Ferraro B, Hoeflinger JKL, Polewka V, Khaled NB, Allgeier J, Tiedt S, Dichgans M, Engelmann B, Enard W, Mertins P, Hubner N, Weckbach L, Zimmer R, Massberg S, Stark K, Nicolai L, Pekayvaz K. Peripheral priming induces plastic transcriptomic and proteomic responses in circulating neutrophils required for pathogen containment. SCIENCE ADVANCES 2024; 10:eadl1710. [PMID: 38517968 DOI: 10.1126/sciadv.adl1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christoph Gold
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Joppich
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | | | - Tonina T Mueller
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Felix Offensperger
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lea di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | | | - Luke Eivers
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Afra Anjum
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nils Bruns
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robin Dewender
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Sezer Akgöl
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Bartolo Ferraro
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jonathan K L Hoeflinger
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Najib Ben Khaled
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Julian Allgeier
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ludwig Weckbach
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ralf Zimmer
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
2
|
Volkmann J, von Vietinghoff S. Letter to the Editor. J Leukoc Biol 2020; 108:1707. [PMID: 32794203 DOI: 10.1002/jlb.3lt0720-404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Julia Volkmann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
3
|
Dahlstrand Rudin A, Amirbeagi F, Davidsson L, Khamzeh A, Thorbert Mros S, Thulin P, Welin A, Björkman L, Christenson K, Bylund J. The neutrophil subset defined by CD177 expression is preferentially recruited to gingival crevicular fluid in periodontitis. J Leukoc Biol 2020; 109:349-362. [PMID: 32531826 DOI: 10.1002/jlb.3a0520-081rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Firoozeh Amirbeagi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Davidsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sara Thorbert Mros
- Specialist Clinic of Periodontics, Gothenburg, Public Dental Service, Region Västra Götaland, Sweden
| | - Pontus Thulin
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Unit of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Volkmann J, Schmitz J, Nordlohne J, Dong L, Helmke A, Sen P, Immenschuh S, Bernhardt WM, Gwinner W, Bräsen JH, Schmitt R, Haller H, von Vietinghoff S. Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 in vivo. Clin Exp Immunol 2019; 199:97-108. [PMID: 31509227 PMCID: PMC6904607 DOI: 10.1111/cei.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G‐CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia–reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G‐CSF‐responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G‐CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G‐CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia–reperfusion and unilateral ureteral obstruction injuries in mice, renal G‐CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G‐CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group‐incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G‐CSF expression. Our data demonstrate that kidney injury induces renal G‐CSF expression and modulates granulopoiesis. They delineate differential G‐CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.
Collapse
Affiliation(s)
- J Volkmann
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - J Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - L Dong
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - A Helmke
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - P Sen
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - W M Bernhardt
- Clinic for Hypertension, Kidney- and Metabolic Diseases Hannover, Hannover, Germany
| | - W Gwinner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J H Bräsen
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - R Schmitt
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
6
|
'Tis one thing to adhere, another to migrate. Blood 2017; 130:2047-2049. [PMID: 29122770 DOI: 10.1182/blood-2017-09-803569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Planell N, Masamunt MC, Leal RF, Rodríguez L, Esteller M, Lozano JJ, Ramírez A, Ayrizono MDLS, Coy CSR, Alfaro I, Ordás I, Visvanathan S, Ricart E, Guardiola J, Panés J, Salas A. Usefulness of Transcriptional Blood Biomarkers as a Non-invasive Surrogate Marker of Mucosal Healing and Endoscopic Response in Ulcerative Colitis. J Crohns Colitis 2017; 11:1335-1346. [PMID: 28981629 PMCID: PMC5881703 DOI: 10.1093/ecco-jcc/jjx091] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease of the colon. Colonoscopy remains the gold standard for evaluating disease activity, as clinical symptoms are not sufficiently accurate. The aim of this study is to identify new accurate non-invasive biomarkers based on whole-blood transcriptomics that can predict mucosal lesions and response to treatment in UC patients. METHODS Whole-blood samples were collected for a total of 152 UC patients at endoscopy. Blood RNA from 25 UC individuals and 20 controls was analysed using microarrays. Genes that correlated with endoscopic activity were validated using real-time polymerase chain reaction in an independent group of 111 UC patients, and a prediction model for mucosal lesions was evaluated. Responsiveness to treatment was assessed in a longitudinal cohort of 16 UC patients who started anti-tumour necrosis factor [TNF] therapy and were followed up for 14 weeks. RESULTS Microarray analysis identified 122 genes significantly altered in the blood of endoscopically active UC patients. A significant correlation with the degree of endoscopic activity was observed in several genes, including HP, CD177, GPR84, and S100A12. Using HP as a predictor of endoscopic disease activity, an accuracy of 67.3% was observed, compared with 52.4%, 45.2%, and 30.3% for C-reactive protein, erythrocyte sedimentation rate, and platelet count, respectively. Finally, at 14 weeks of treatment, response to anti-TNF therapy induced alterations in blood HP, CD177, GPR84, and S100A12 transcripts that correlated with changes in endoscopic activity. CONCLUSIONS Transcriptional changes in UC patients are sensitive to endoscopic improvement and appear to be an effective tool to monitor patients over time.
Collapse
Affiliation(s)
- Núria Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain,Bioinformatics Platform, CIBER-EHD, Barcelona, Spain
| | - M Carme Masamunt
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Raquel Franco Leal
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain,IBD Research Laboratory, Surgery Department, University of Campinas, Sao Paulo, Brazil
| | - Lorena Rodríguez
- Department of Gastroenterology, Hospital Universitari de Bellvitge-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Miriam Esteller
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Juan J Lozano
- Bioinformatics Platform, CIBER-EHD, Barcelona, Spain
| | - Anna Ramírez
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | | | | - Ignacio Alfaro
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Ingrid Ordás
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | | - Elena Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Jordi Guardiola
- Department of Gastroenterology, Hospital Universitari de Bellvitge-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Panés
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain,Corresponding author: Azucena Salas, Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona 080036, Spain. Tel.: +34-932272436;
| |
Collapse
|
8
|
CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood 2017; 130:2092-2100. [PMID: 28807980 DOI: 10.1182/blood-2017-03-768507] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177pos and CD177neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration.
Collapse
|
9
|
Scapini P, Marini O, Tecchio C, Cassatella MA. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev 2017; 273:48-60. [PMID: 27558327 DOI: 10.1111/imr.12448] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent findings have uncovered novel fascinating aspects of the biology of neutrophils, which ultimately attribute to these cells a broader role in inflammation and immunity. One aspect that is currently under intensive investigation is the notion of neutrophil 'heterogeneity'. Studies examining neutrophils in a variety of acute and chronic inflammatory conditions report, in fact, the recovery of CD66b(+) cells displaying neutrophil-like morphology at different degrees of maturation/activation, able to exert either immunosuppressive or proinflammatory properties. These heterogeneous populations of mature and immature neutrophils are indicated with a variety of names, including 'low density neutrophils (LDNs)', 'low density granulocytes (LDGs)', 'granulocytic-myeloid derived suppressor cells (G-MDSCs)', and immunosuppressive neutrophils. However, due to the lack of discrete markers that can unequivocally allow their specific identification and isolation, the precise phenotype and function of all these presumably novel, neutrophil-like, populations have not been correctly defined yet. Aim of this article is to summarize current knowledge on the mature and immature neutrophil populations described to date, featuring immunosuppressive or proinflammatory properties, often defined as 'subsets', as well as to critically discuss unresolved issues in the field.
Collapse
Affiliation(s)
- Patrizia Scapini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Olivia Marini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Division of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | | |
Collapse
|
10
|
Abstract
Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated.
Collapse
Affiliation(s)
- Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark.,The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Martin KR, Witko-Sarsat V. Proteinase 3: the odd one out that became an autoantigen. J Leukoc Biol 2017; 102:689-698. [PMID: 28546501 DOI: 10.1189/jlb.3mr0217-069r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are critical in the defense against bacterial and fungal pathogens, and they also modulate the inflammatory process. The areas where neutrophils are studied have expanded from the restricted field of antibacterial defense to the modulation of inflammation and finally, to fine-tuning immune responses. As a result, recent studies have shown that neutrophils are implicated in several systemic autoimmune diseases, although exactly how neutrophils contribute to these diseases and the molecular mechanisms responsible are still under investigation. In a group of autoimmune vasculitides associated with anti-neutrophil cytoplasmic antibodies (AAVs), granulomatosis with polyangiitis (GPA) illustrates the concept that autoimmunity can develop against one specific neutrophil protein, namely, proteinase 3 (PR3), one of the four serine protease homologs contained within azurophilic granules. In this review, we will focus on recent molecular analyses combined with functional studies that provide clear evidence that the pathogenic properties of PR3 are not only a result of its enzymatic activity but also mediated by a particular structural element-the hydrophobic patch-which facilitates associations with various proteins and lipids and permits anchorage into the plasma membrane. Furthermore, these unique structural and functional characteristics of PR3 might be key contributors to the systemic inflammation and to the immune dysregulation observed in GPA.
Collapse
Affiliation(s)
- Katherine R Martin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; .,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| |
Collapse
|
12
|
Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 2016; 127:2173-81. [DOI: 10.1182/blood-2016-01-688887] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Abstract
Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a homogenous population of terminally differentiated cells with a well-defined and highly conserved function. Indeed, their short lifespan, the absent proliferative capacity, their limited ability to produce large amounts of cytokines, and the failure to recirculate from the tissue to the bloodstream have sustained this idea. However, increasing evidence over the last decade has demonstrated an unexpected phenotypic heterogeneity and functional versatility of the neutrophil population. Far beyond their antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. These emerging discoveries open a new door to understand the role of neutrophils during homeostatic but also pathogenic immune processes. Thus, this review details novel insights of neutrophil phenotypic and functional heterogeneity during homeostasis and disease.
Collapse
|
13
|
The role of neutrophils in causing antineutrophil cytoplasmic autoantibody-associated vasculitis. Curr Opin Hematol 2015; 22:60-6. [PMID: 25394311 DOI: 10.1097/moh.0000000000000098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Antineutrophil cytoplasmic antibody (ANCA)-activated phagocytes cause vasculitis and necrotizing crescentic glomerulonephritis. Experimental data support the notion that activation of neutrophils and monocytes by ANCA immunoglobulin G with generation of reactive oxygen species, degranulation of proteases, and formation of neutrophil extracellular traps play a role in tissue injury. RECENT FINDINGS We discuss novel findings regarding the expression of ANCA antigens and the mechanisms involved in myeloid cell activation by ANCA immunoglobulin G. The contribution of neutrophil serine proteases and their specific role in the generation of interleukin-1beta (IL-1β) is highlighted. ANCA-induced reactive oxygen species generation plays an important role in downregulating inflammation by inhibition of the inflammasome-dependent caspase-1 activation and subsequent IL-1β generation. Neutrophil extracellular trap generation by ANCA-activated neutrophils and their potential role in the pathogenesis of the disease will be discussed. Lastly, the pathogenic role of the complement system will be discussed. SUMMARY ANCA-induced activation of both neutrophils and monocytes is one of the main pathogenic mechanisms involved in disease induction. Therefore, a better understanding of the fundamental processes involved here are necessary. Specifically, the mechanisms involved in IL-1β generation have been recently identified and could lead to better targeted novel therapies.
Collapse
|
14
|
Xie Q, Klesney-Tait J, Keck K, Parlet C, Borcherding N, Kolb R, Li W, Tygrett L, Waldschmidt T, Olivier A, Chen S, Liu GH, Li X, Zhang W. Characterization of a novel mouse model with genetic deletion of CD177. Protein Cell 2014; 6:117-26. [PMID: 25359465 PMCID: PMC4312768 DOI: 10.1007/s13238-014-0109-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/25/2014] [Indexed: 01/12/2023] Open
Abstract
Neutrophils play an essential role in the innate immune response to infection. Neutrophils migrate from the vasculature into the tissue in response to infection. Recently, a neutrophil cell surface receptor, CD177, was shown to help mediate neutrophil migration across the endothelium through interactions with PECAM1. We examined a publicly available gene array dataset of CD177 expression from human neutrophils following pulmonary endotoxin instillation. Among all 22,214 genes examined, CD177 mRNA was the most upregulated following endotoxin exposure. The high level of CD177 expression is also maintained in airspace neutrophils, suggesting a potential involvement of CD177 in neutrophil infiltration under infectious diseases. To determine the role of CD177 in neutrophils in vivo, we constructed a CD177-genetic knockout mouse model. The mice with homozygous deletion of CD177 have no discernible phenotype and no significant change in immune cells, other than decreased neutrophil counts in peripheral blood. We examined the role of CD177 in neutrophil accumulation using a skin infection model with Staphylococcus aureus. CD177 deletion reduced neutrophil counts in inflammatory skin caused by S. aureus. Mechanistically we found that CD177 deletion in mouse neutrophils has no significant impact in CXCL1/KC- or fMLP-induced migration, but led to significant cell death. Herein we established a novel genetic mouse model to study the role of CD177 and found that CD177 plays an important role in neutrophils.
Collapse
Affiliation(s)
- Qing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wirnsberger G, Zwolanek F, Stadlmann J, Tortola L, Liu SW, Perlot T, Järvinen P, Dürnberger G, Kozieradzki I, Sarao R, De Martino A, Boztug K, Mechtler K, Kuchler K, Klein C, Elling U, Penninger JM. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat Genet 2014; 46:1028-33. [PMID: 25129145 PMCID: PMC6245568 DOI: 10.1038/ng.3070] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/25/2014] [Indexed: 01/10/2023]
Abstract
Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.
Collapse
Affiliation(s)
- Gerald Wirnsberger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Florian Zwolanek
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, 1030 Vienna, Austria
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
- IMP, Institute for Molecular Pathology, 1030, Vienna, Austria
| | - Luigi Tortola
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Shang Wan Liu
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Thomas Perlot
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Päivi Järvinen
- Department of Pediatrics, Dr. Von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhard Dürnberger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
- IMP, Institute for Molecular Pathology, 1030, Vienna, Austria
| | - Ivona Kozieradzki
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Renu Sarao
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Karl Mechtler
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
- IMP, Institute for Molecular Pathology, 1030, Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, 1030 Vienna, Austria
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
16
|
Abstract
It is now widely recognized that neutrophils are highly versatile and sophisticated cells that display de novo synthetic capacity and may greatly extend their lifespan. In addition, concepts such as "neutrophil heterogeneity" and "neutrophil plasticity" have started to emerge, implying that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional profiles. A number of studies have shown that neutrophils act as effectors in both innate and adaptive immunoregulatory networks. In fact, once recruited into inflamed tissues, neutrophils engage into complex bidirectional interactions with macrophages, natural killer, dendritic and mesenchymal stem cells, B and T lymphocytes, or platelets. As a result of this cross-talk, mediated either by contact-dependent mechanisms or cell-derived soluble factors, neutrophils and target cells reciprocally modulate their survival and activation status. Altogether, these novel aspects of neutrophil biology have shed new light not only on the potential complex roles that neutrophils play during inflammation and immune responses, but also in the pathogenesis of several inflammatory disorders including infection, autoimmunity, and cancer.
Collapse
|