1
|
Rivas S, Silva P, Reyes M, Sepúlveda H, Solano L, Acuña J, Guerrero M, Varas-Godoy M, Quest AFG, Montecino M, Torres VA. The RabGEF ALS2 is a hypoxia inducible target associated with the acquisition of aggressive traits in tumor cells. Sci Rep 2020; 10:22302. [PMID: 33339852 PMCID: PMC7749157 DOI: 10.1038/s41598-020-79270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022] Open
Abstract
Tumor hypoxia and the hypoxia inducible factor-1, HIF-1, play critical roles in cancer progression and metastasis. We previously showed that hypoxia activates the endosomal GTPase Rab5, leading to tumor cell migration and invasion, and that these events do not involve changes in Rab protein expression, suggesting the participation of intermediate activators. Here, we identified ALS2, a guanine nucleotide exchange factor that is upregulated in cancer, as responsible for increased Rab5-GTP loading, cell migration and metastasis in hypoxia. Specifically, hypoxia augmented ALS2 mRNA and protein levels, and these events involved HIF-1α-dependent transcription, as shown by RNAi, pharmacological inhibition, chromatin immunoprecipitation and bioinformatics analyses, which identified a functional HIF-1α-binding site in the proximal promoter region of ALS2. Moreover, ALS2 and Rab5 activity were elevated both in a model of endogenous HIF-1α stabilization (renal cell carcinoma) and by following expression of stable non-hydroxylatable HIF-1α. Strikingly, ALS2 upregulation in hypoxia was required for Rab5 activation, tumor cell migration and invasion, as well as experimental metastasis in C57BL/6 mice. Finally, immunohistochemical analyses in patient biopsies with renal cell carcinoma showed that elevated HIF-1α correlates with increased ALS2 expression. Hence, this study identifies ALS2 as a novel hypoxia-inducible gene associated with tumor progression and metastasis.
Collapse
Affiliation(s)
- Solange Rivas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Hugo Sepúlveda
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Luis Solano
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Juan Acuña
- Laboratory of Pathological Anatomy, Hospital San José, Santiago, Chile
| | - Marisol Guerrero
- Laboratory of Pathological Anatomy, Hospital San José, Santiago, Chile
| | - Manuel Varas-Godoy
- Center for Cell Biology and Biomedicine (CEBICEM), Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Biomedical Sciences Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Li W, Zhang Z, Liu X, Cheng X, Zhang Y, Han X, Zhang Y, Liu S, Yang J, Xu B, He L, Sun L, Liang J, Shang Y. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J Clin Invest 2017; 127:3421-3440. [PMID: 28805661 DOI: 10.1172/jci94233] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiological function of the forkhead transcription factor FOXN3 remains to be explored. Here we report that FOXN3 is a transcriptional repressor that is physically associated with the SIN3A repressor complex in estrogen receptor-positive (ER+) cells. RNA immunoprecipitation-coupled high-throughput sequencing identified that NEAT1, an estrogen-inducible long noncoding RNA, is required for FOXN3 interactions with the SIN3A complex. ChIP-Seq and deep sequencing of RNA genomic targets revealed that the FOXN3-NEAT1-SIN3A complex represses genes including GATA3 that are critically involved in epithelial-to-mesenchymal transition (EMT). We demonstrated that the FOXN3-NEAT1-SIN3A complex promotes EMT and invasion of breast cancer cells in vitro as well as dissemination and metastasis of breast cancer in vivo. Interestingly, the FOXN3-NEAT1-SIN3A complex transrepresses ER itself, forming a negative-feedback loop in transcription regulation. Elevation of both FOXN3 and NEAT1 expression during breast cancer progression corresponded to diminished GATA3 expression, and high levels of FOXN3 and NEAT1 strongly correlated with higher histological grades and poor prognosis. Our experiments uncovered that NEAT1 is a facultative component of the SIN3A complex, shedding light on the mechanistic actions of NEAT1 and the SIN3A complex. Further, our study identified the ERα-NEAT1-FOXN3/NEAT1/SIN3A-GATA3 axis that is implicated in breast cancer metastasis, providing a mechanistic insight into the pathophysiological function of FOXN3.
Collapse
Affiliation(s)
- Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bosen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Erdman VV, Karimov DD, Nasibullin TR, Timasheva IR, Tuktarova IA, Mustafina OE. The role of Alu polymorphism of PLAT, PKHD1L1, STK38L, and TEAD1 genes in development of a longevity trait. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|