1
|
Chatzidavid S, Kontandreopoulou CN, Diamantopoulos PT, Giannakopoulou N, Katsiampoura P, Stafylidis C, Dryllis G, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Clinical and Prognostic Significance of Ribonucleotide Reductase Subunits RRM1 and RRM2 mRNA Levels in Patients with Chronic Lymphocytic Leukemia. Clin Hematol Int 2023:10.1007/s44228-023-00033-x. [PMID: 36811764 DOI: 10.1007/s44228-023-00033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Ribonucleotide Reductase (RNR) converts ribonucleotides to deoxyribonucleotides required for DNA replication and repair. RNR consists of subunits M1 and M2. It has been studied as a prognostic factor in several solid tumors and in chronic hematological malignancies, but not in chronic lymphocytic leukemia (CLL). Peripheral blood samples were collected from 135 CLL patients. M1/M2 gene mRNA levels were measured and expressed as a RRM1-2/GAPDH ratio. M1 gene promoter methylation was studied in a patients' subgroup. M1 mRNA expression was higher in patients without anemia (p = 0.026), without lymphadenopathy (p = 0.005) and 17p gene deletion (p = 0.031). Abnormal LDH (p = 0.022) and higher Rai stage (p = 0.019) were associated with lower M1 mRNA levels. Higher M2 mRNA levels were found in patients without lymphadenopathy (p = .048), Rai stage 0 (p = 0.025) and Trisomy 12 (p = 0.025). The correlation between RNR subunits and clinic-biological characteristics in CLL patients demonstrate RNR's potential role as a prognostic factor.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece.
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Panagiota Katsiampoura
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| |
Collapse
|
2
|
Co-operation of ABT-199 and gemcitabine in impeding DNA damage repair and inducing cell apoptosis for synergistic therapy of T-cell acute lymphoblastic leukemia. Anticancer Drugs 2020; 30:138-148. [PMID: 30320607 DOI: 10.1097/cad.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia with limited therapeutic options available. Here, we evaluated the therapeutic potential of the combination of the Bcl-2 antagonist ABT-199 and cytotoxic agent gemcitabine in T-ALL cell lines. Our results showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity and induced significant apoptosis in human T-ALL cell lines (Jurkat and Molt4). The augmented apoptosis induced by combination treatment was accompanied by the greater extent of mitochondrial depolarization and enhanced DNA damage. Importantly, single agent induced DNA damage alone but did not inhibit RAD51/BRCA1-mediated repair for DNA double-strand breaks. In contrast, the combination of ABT-199 and gemcitabine disrupted RAD51/BRCA1-dependent DNA repair and remarkably activated caspase-3 and PARP to trigger apoptosis. Moreover, ABT-199 exerted an antagonistic action towards Bcl-2 and Bcl-xL, but to a certain extent moderately increased Mcl-1 level that could be compromised by gemcitabine. In conclusion, our study showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity in T-ALL cells by cooperatively targeting DNA damage repair pathway and Bcl-2 family proteins.
Collapse
|
3
|
Zemanova J, Hylse O, Collakova J, Vesely P, Oltova A, Borsky M, Zaprazna K, Kasparkova M, Janovska P, Verner J, Kohoutek J, Dzimkova M, Bryja V, Jaskova Z, Brychtova Y, Paruch K, Trbusek M. Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53-mutated B-lymphoid cells. Oncotarget 2018; 7:62091-62106. [PMID: 27556692 PMCID: PMC5308713 DOI: 10.18632/oncotarget.11388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Treatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies. In p53-proficient NALM-6 cells, SCH900776 added to NAs enhanced signaling towards Chk1 (pSer317/pSer345), effectively blocked Chk1 activation (Ser296 autophosphorylation), increased replication stress (p53 and γ-H2AX accumulation) and temporarily potentiated apoptosis. In p53-defective MEC-1 cell line representing adverse chronic lymphocytic leukemia (CLL), Chk1 inhibition together with NAs led to enhanced and sustained replication stress and significantly potentiated apoptosis. Altogether, among 17 tested cell lines SCH900776 sensitized four of them to all three NAs. Focusing further on MEC-1 and co-treatment of SCH900776 with fludarabine, we disclosed chromosome pulverization in cells undergoing aberrant mitoses. SCH900776 also increased the effect of fludarabine in a proportion of primary CLL samples treated with pro-proliferative stimuli, including those with TP53 disruption. Finally, we observed a fludarabine potentiation by SCH900776 in a T-cell leukemia 1 (TCL1)-driven mouse model of CLL. Collectively, we have substantiated the significant potential of Chk1 inhibition in B-lymphoid cells.
Collapse
Affiliation(s)
- Jana Zemanova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Hylse
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Collakova
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Vesely
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Zaprazna
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Kasparkova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Janovska
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Marta Dzimkova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zuzana Jaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Coyne CP, Narayanan L. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549). Chem Biol Drug Des 2017; 89:379-399. [PMID: 27561602 PMCID: PMC5396302 DOI: 10.1111/cbdd.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10-9 M and 10-7 M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
| | - Lakshmi Narayanan
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- Present address: Fishery and Wildlife Research CenterMississippi State UniversityLocksley Way 201Mississippi StateMSUSA
| |
Collapse
|
5
|
Alsagaby SA, Brennan P, Pepper C. Key Molecular Drivers of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:593-606. [PMID: 27601002 DOI: 10.1016/j.clml.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an adult neoplastic disease of B cells characterized by variable clinical outcomes. Although some patients have an aggressive form of the disease and often encounter treatment failure and short survival, others have more stable disease with long-term survival and little or no need for theraphy. In the past decade, significant advances have been made in our understanding of the molecular drivers that affect the natural pathology of CLL. The present review describes what is known about these key molecules in the context of their role in tumor pathogenicity, prognosis, and therapy.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory, College of Science, Majmaah University, Al-Zuli, Kingdom of Saudi Arabia; Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Paul Brennan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chris Pepper
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|