1
|
Liu S, Wang Y. Diagnosis and management of adult central nervous system leukemia. BLOOD SCIENCE 2023; 5:141-149. [PMID: 37546706 PMCID: PMC10400053 DOI: 10.1097/bs9.0000000000000162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 08/08/2023] Open
Abstract
Central nervous system leukemia (CNSL) is a prominent infiltration reason for therapy failing in acute leukemia. Recurrence rates and the prognosis have alleviated with current prophylactic regimens. However, the accurate stratification of relapse risk and treatment regimens for relapsed or refractory patients remain clinical challenges yet to be solved. Recently, with hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor-T (CAR-T) cellular therapy showing encouraging effects in some CNSL patients, advances in treating CNSL have already been reported. The development of molecular targeted agents as well as antibody-based drugs will provide patients with more personalized treatment. This article summarized recent research developments about risk factors, diagnosis, prevention, and treatment in adults with CNSL.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
2
|
Yi H, Liu K, Yang W, Li Y, Wang X, Zhang T, Liu C, Li Y, Mi Y. MRI manifestations of central nervous system leukaemia and cytological analysis of the cerebrospinal fluid. Clin Radiol 2023:S0009-9260(23)00213-1. [PMID: 37330321 DOI: 10.1016/j.crad.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/19/2023]
Abstract
AIM To investigate the magnetic resonance imaging (MRI) features and explore the value of MRI in the diagnosis of central nervous system leukaemia (CNSL). MATERIALS AND METHODS A retrospective study was performed in 68 patients with leukaemia who underwent cranial MRI between January 2020 and June 2022 at Institute of Hematology and Blood Diseases Hospital. RESULTS A total of 33 patients fulfilled the requirements for inclusion. The findings showed that 87.9% patients exhibited neurological symptoms, and 23 patients showed abnormal MRI findings. No differences were observed between the MRI+ and MRI- groups in terms of age, sex, neurological symptoms, glucose in the cerebrospinal fluid (CSF), chloride in the CSF, abnormal cells detected using conventional cytology (CC), bone marrow status at the diagnosis of CNSL, signal intensity ratio, and mortality, except for protein concentration and the number of leukaemic cells detected using flow cytometry (FCM) in the CSF. Kaplan-Meier survival analysis in patients with leukaemia revealed no statistical differences in the median survival times between the MRI+ group and MRI- group. Cox regression analysis and multivariate analysis showed no significant difference in survival rate between the MRI+ and MRI- groups. Kappa consistency test shows weak diagnostic consistency between MRI and CC, and weak diagnostic inconsistency between MRI and FCM. CONCLUSION MRI could serve as an important complementary tool to CC and FCM in the diagnosis of CNSL, especially in patients without leptomeningeal involvement.
Collapse
Affiliation(s)
- H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - K Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - W Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - T Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - C Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Y Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
3
|
Ma L, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Lv M, Tang FF, Mo XD, Wang ZD, Jiang Q, Lu J, Jiang H, Liu YR, Liu KY, Chang YJ, Huang XJ. Effects of isolated central nervous system involvement evaluated by multiparameter flow cytometry prior to allografting on outcomes of patients with acute lymphoblastic leukemia. Front Oncol 2023; 13:1166990. [PMID: 37251948 PMCID: PMC10209422 DOI: 10.3389/fonc.2023.1166990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a major strategy to cure patients with acute lymphoblastic leukemia (ALL). The aim of this study was to evaluate whether isolated flow cytometry (FCM)-positive central nervous system (CNS) involvement before allo-HSCT is clinically significant. Methods The effects of isolated FCM-positive CNS involvement prior to transplantation on the outcomes of 1406 ALL patients with complete remission (CR) were retrospectively investigated. Results Patients were classified into isolated FCM-positive CNS involvement (n=31), cytology-positive CNS involvement (n = 43), and negative CNS involvement (n = 1332) groups. Among the three groups, the 5-year cumulative incidence of relapse (CIR) values were 42.3%, 48.8%, and 23.4%, respectively (P<0.001). The 5-year leukemia-free survival (LFS) values were 44.7%, 34.9%, and 60.8%, respectively (P<0.001). Compared with the negative CNS group (n=1332), the 5-year CIR of the pre-HSCT CNS involvement group (n=74) was higher (46.3% vs. 23.4%, P<0.001], and the 5-year LFS was inferior (39.1% vs. 60.8%, P<0.001). Multivariate analysis indicated that four variables, T-cell ALL, in second complete remission or beyond (CR2+) at HSCT, pre-HSCT measurable residual disease positivity, and pre-HSCT CNS involvement, were independently associated with a higher CIR and inferior LFS. A new scoring system was developed using the following four variables: low-risk, intermediate-risk, high-risk, and extremely high-risk groups. The 5-year CIR values were 16.9%, 27.8%, 50.9%, and 66.7%, respectively (P<0.001), while the 5-year LFS values were 67.6%, 56.9%, 31.0%, and 13.3%, respectively (P<0.001). Conclusion Our results suggest that ALL patients with isolated FCM-positive CNS involvement are at a higher risk of recurrence after transplantation. Patients with pre-HSCT CNS involvement had higher CIR and inferior survival outcomes.
Collapse
|
4
|
Mokhtari M, Alizadeh A, Monabati A, Safaei A. Comparison of flowcytometry and conventional cytology for diagnosis of CNS involvement in hematologic malignancies. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2022. [DOI: 10.1016/j.phoj.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
[Chinese guidelines for diagnosis and treatment of adult acute lymphoblastic leukemia (2021)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:705-716. [PMID: 34753224 PMCID: PMC8607046 DOI: 10.3760/cma.j.issn.0253-2727.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/05/2022]
|
6
|
Tang J, Yu J, Cai J, Zhang L, Hu S, Gao J, Jiang H, Fang Y, Liang C, Ju X, Jin R, Zhai X, Wu X, Tian X, Hu Q, Wang N, Jiang H, Sun L, Leung AWK, Yang M, Pan K, Cheng C, Zhu Y, Zhang H, Li C, Yang JJ, Li CK, Zhu X, Shen S, Pui CH. Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation. Blood 2021; 138:331-343. [PMID: 33684941 PMCID: PMC8323972 DOI: 10.1182/blood.2020010438] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
To identify the prognostic factors that are useful to improve central nervous system (CNS) control in children with acute lymphoblastic leukemia (ALL), we analyzed the outcome of 7640 consecutive patients treated on Chinese Children's Cancer Group ALL-2015 protocol between 2015 and 2019. This protocol featured prephase dexamethasone treatment before conventional remission induction and subsequent risk-directed therapy, including 16 to 22 triple intrathecal treatments, without prophylactic cranial irradiation. The 5-year event-free survival was 80.3% (95% confidence interval [CI], 78.9-81.7), and overall survival 91.1% (95% CI, 90.1-92.1). The cumulative risk of isolated CNS relapse was 1.9% (95% CI, 1.5-2.3), and any CNS relapse 2.7% (95% CI, 2.2-3.2). The isolated CNS relapse rate was significantly lower in patients with B-cell ALL (B-ALL) than in those with T-cell ALL (T-ALL) (1.6%; 95% CI, 1.2-2.0 vs 4.6%; 95% CI, 2.9-6.3; P < .001). Independent risk factors for isolated CNS relapse included male sex (hazard ratio [HR], 1.8; 95% CI, 1.1-3.0; P = .03), the presence of BCR-ABL1 fusion (HR, 3.8; 95% CI, 2.0-7.3; P < .001) in B-ALL, and presenting leukocyte count ≥50×109/L (HR, 4.3; 95% CI, 1.5-12.2; P = .007) in T-ALL. Significantly lower isolated CNS relapse was associated with the use of total intravenous anesthesia during intrathecal therapy (HR, 0.2; 95% CI, 0.04-0.7; P = .02) and flow cytometry examination of diagnostic cerebrospinal fluid (CSF) (HR, 0.2; 95% CI, 0.06-0.6; P = .006) among patients with B-ALL. Prephase dexamethasone treatment, delayed intrathecal therapy, use of total intravenous anesthesia during intrathecal therapy, and flow cytometry examination of diagnostic CSF may improve CNS control in childhood ALL. This trial was registered with the Chinese Clinical Trial Registry (ChiCTR-IPR-14005706).
Collapse
Affiliation(s)
- Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jie Yu
- Department of Hematology/Oncology, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Li Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Changda Liang
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Tian
- Department of Hematology/Oncology, KunMing Children's Hospital, Kunming, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Anhui, China
| | - Hui Jiang
- Department of Hematology/Oncology, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Lirong Sun
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Alex W K Leung
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, China
| | - Kaili Pan
- Department of Hematology/Oncology, Xi'an Northwest Women's and Children's Hospital, Xi'an, China; and
| | - Cheng Cheng
- Departments of Oncology, Global Pediatric Medicine, Biostatistics and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Yiping Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Chunfu Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun J Yang
- Departments of Oncology, Global Pediatric Medicine, Biostatistics and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Chi-Kong Li
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Ching-Hon Pui
- Departments of Oncology, Global Pediatric Medicine, Biostatistics and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
7
|
Del Principe MI, Gatti A, Johansson U, Buccisano F, Brando B. ESCCA
/
ISCCA
protocol for the analysis of cerebrospinal fluid by multiparametric flow‐cytometry in hematological malignancies. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:269-281. [DOI: 10.1002/cyto.b.21981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/14/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Arianna Gatti
- Blood Transfusion Center Legnano General Hospital Legnano Italy
| | - Ulrika Johansson
- SI‐HMDS University Hospitals Bristol and Weston NHS Foundation Trust Bristol United Kingdom
| | - Francesco Buccisano
- Hematology, Department of BioMedicine and Prevention University of Rome “Tor Vergata” Rome Italy
| | - Bruno Brando
- Blood Transfusion Center Legnano General Hospital Legnano Italy
| |
Collapse
|
8
|
Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019; 8:E1195. [PMID: 31581745 PMCID: PMC6830088 DOI: 10.3390/cells8101195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Galina A. Afanaseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Alexander S. Fedonnikov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Evgeny Yu. Osintsev
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Elena N. Kurochkina
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Dmitry A. Gorin
- Laboratory of Biophotonics, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Vladimir P. Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ekaterina I. Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|