1
|
Li L, Shi J, Liu W, Luo Y, Gao S, Liu JX. Copper overload induces apoptosis and impaired proliferation of T cell in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106808. [PMID: 38159456 DOI: 10.1016/j.aquatox.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Copper is an essential biometal for cell development and function, however, unbalanced copper homeostasis in T cell development and the underlying mechanisms are largely unexplored. Here, we use a zebrafish model to investigate the effect of copper overload in T cell development. We show that copper stressed zebrafish larvae exhibit a significant reduction in T cells with increased cell apoptosis and impaired cell proliferation. T cell progenitors, hematopoietic stem and progenitor cells, also exhibit increased cell apoptosis. Copper overload induces production of ROS and the down-regulations of its resistance genes foxos, and ectopic expression of foxo3a, ROS scavenger GSH, could both effectively rescue the reduction of T cells in copper overload larvae. Moreover, foxm1-cytoskeleton axis, parallel to ROS-foxo axis, also mediates the copper overload induced T cell developmental defects. Meanwhile, ROS destroys expression of cytoskeleton rather than of foxm1 in the cells to induce cell apoptosis and the impaired proliferation. The functional integrity of copper transporters cox17 and atp7b are required for copper stress in inducing T cell apoptosis and proliferation impairment. Our findings demonstrate that the down-stream ROS-foxo/cytoskeleton and foxm1-cytoskeleton signaling pathways contribute jointly to copper overload induced T cell apoptosis and proliferation defects, which are depend on the integral function of Cox17 and Atp7b, and provide new insight into the copper homeostasis in T lymphocyte development.
Collapse
Affiliation(s)
- LingYa Li
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - JiaHao Shi
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - WenYe Liu
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yi Luo
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sheng Gao
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Rasheed R, Thaher M, Younes N, Bounnit T, Schipper K, Nasrallah GK, Al Jabri H, Gifuni I, Goncalves O, Pruvost J. Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155538. [PMID: 35489502 DOI: 10.1016/j.scitotenv.2022.155538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The demand for aquaculture feed will increase in the coming years in order to ensure food security for a growing global population. Microalgae represent a potential fish-feed ingredient; however, the feasibility of their sustainable production has great influence on its successful application. Geographical locations offering high light and temperature, such as Qatar, are ideal to cultivate microalgae with high productivities. For that, the environmental and biological interactions, including field and laboratory optimization, for solar production and application of two native microalgae, Picochlorum maculatum and Nannochloris atomus, were investigated as potential aquaculture feed ingredients. After validating pilot-scale outdoor cultivation, both strains were further investigated under simulated seasonal conditions using a thermal model to predict light and culture temperature cycles for the major climatic seasons in Qatar. Applied thermal and light variations ranged from 36 °C and 2049 μmol/m2/s in extreme summer, to as low as 15 °C and 1107 μmol/m2/s in winter, respectively. Biomass productivities of both strains varied significantly with maximum productivities of 32.9 ± 2.5 g/m2/d and 17.1 ± 0.8 g/m2/d found under moderate summer conditions for P. maculatum and N. atomus, respectively. These productivities were significantly reduced under both extreme summer, as well as winter conditions. To improve annual biomass productivities, the effect of implementation of a simple ground heat exchanger for thermal regulation of raceway ponds was also studied. Biomass productivities increased significantly, during extreme seasons due to respective cooling and heating of the culture. Both strains produced high amounts of proteins during winter, 54.5 ± 0.55% and 44 ± 2.25%, while lipid contents were high during summer reaching up to 29.6 ± 0.75 and 28.65 ± 0.65%, for P. maculatum and N. atomus respectively. Finally, using acute toxicity assay with zebra fish embryos, both strains showed no toxicity even at the highest concentrations tested, and is considered safe for use as feed ingredient and to the environment.
Collapse
Affiliation(s)
- Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Touria Bounnit
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Kira Schipper
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Imma Gifuni
- Algosource Technologies, 7, Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Olivier Goncalves
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| | - Jeremy Pruvost
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| |
Collapse
|
3
|
Carota G, Distefano A, Spampinato M, Giallongo C, Broggi G, Longhitano L, Palumbo GA, Parenti R, Caltabiano R, Giallongo S, Di Rosa M, Polosa R, Bramanti V, Vicario N, Li Volti G, Tibullo D. Neuroprotective Role of α-Lipoic Acid in Iron-Overload-Mediated Toxicity and Inflammation in In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:1596. [PMID: 36009316 PMCID: PMC9405239 DOI: 10.3390/antiox11081596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hemoglobin and iron overload is considered the major contributor to intracerebral hemorrhage (ICH)-induced brain injury. Accumulation of iron in the brain leads to microglia activation, inflammation and cell loss. Current available treatments for iron overload-mediated disorders are characterized by severe adverse effects, making such conditions an unmet clinical need. We assessed the potential of α-lipoic acid (ALA) as an iron chelator, antioxidant and anti-inflammatory agent in both in vitro and in vivo models of iron overload. ALA was found to revert iron-overload-induced toxicity in HMC3 microglia cell line, preventing cell apoptosis, reactive oxygen species generation and reducing glutathione depletion. Furthermore, ALA regulated gene expression of iron-related markers and inflammatory cytokines, such as IL-6, IL-1β and TNF. Iron toxicity also affects mitochondria fitness and biogenesis, impairments which were prevented by ALA pre-treatment in vitro. Immunocytochemistry assay showed that, although iron treatment caused inflammatory activation of microglia, ALA treatment resulted in increased ARG1 expression, suggesting it promoted an anti-inflammatory phenotype. We also assessed the effects of ALA in an in vivo zebrafish model of iron overload, showing that ALA treatment was able to reduce iron accumulation in the brain and reduced iron-mediated oxidative stress and inflammation. Our data support ALA as a novel approach for iron-overload-induced brain damage.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J. The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol 2020; 28:101313. [PMID: 31539803 PMCID: PMC6812007 DOI: 10.1016/j.redox.2019.101313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is widely considered as a limiting factor in vertebrate embryonic development, which requires adequate oxygen delivery for efficient energy metabolism, while nowadays some researches have revealed that hypoxia can induce stem cells so as to improve embryonic development. Erythroid differentiation is the oxygen delivery method employed by vertebrates at the very early step of embryo development, however, the mechanism how erythroid progenitor cell was triggered into mature erythrocyte is still not clear. In this study, after detecting the upregulation of vgll4b in response to oxygen levels, we generated vgll4b mutant zebrafish using CRISPR/Cas9, and verified the resulting impaired heme and dysfunctional erythroid terminal differentiation phenotype. Neither the vgll4b-deficient nor the γ-secretase inhibitor IX (DAPT)-adapted zebrafish were able to mediate HIF1α-induced heme generation. In addition, we showed that vgll4b mutant zebrafish were associated with an impaired erythroid phenotype, induced by the downregulation of alas2, which could be rescued by irf2bp2 depletion. Further mechanistic studies revealed that zebrafish VGLL4 sequesters IRF2BP2, thereby inhibiting its repression of alas2 expression and heme biosynthesis. These processes occur primarily via the VGLL4 TDU1 and IRF2BP2 ring finger domains. Our study also indicates that VGLL4 is a key player in the mediation of NOTCH1-dependent HIF1α-regulated erythropoiesis and can be sensitively regulated by oxygen concentrations. On the other hand, VGLL4 is a pivotal regulator of heme biosynthesis and erythroid terminal differentiation, which collectively improve oxygen metabolism.
Collapse
Affiliation(s)
- Yiqin Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohui Liu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baoshu Xie
- Department of Neurosurgery, The First Affliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Yuan
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
| |
Collapse
|
5
|
Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother 2019; 111:1277-1289. [PMID: 30841441 DOI: 10.1016/j.biopha.2018.12.140] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are among the most studied issues both in medicine and pharmacy. Despite long and extensive research, there is no effective treatment prescribed for such diseases, including Alzheimer's or Parkinson's. Available data exposes their multi-faceted character that requires a complex and multidirectional approach to treatment. In this case, the most important challenge is to understand the neurodegenerative mechanisms, which should permit the development of more elaborate and effective therapies. In the submitted review, iron and zinc are discussed as important and perfectly possible neurodegenerative factors behind Alzheimer's and Parkinson's diseases. It is commonly known that these elements are present in living organisms and are essential for the proper operation of the body. Still, their influence is positive only when their proper balance is maintained. Otherwise, when any imbalance occurs, this can eventuate in numerous disturbances, among them oxidative stress, accumulation of amyloid β and the formation of neurofibrillary tangles, let alone the increase in α-synuclein concentration. At the same time, available research data reveals certain discrepancies in approaching metal ions as either impassive, helpful, or negative factors influencing the development of neurodegenerative changes. This review outlines selected neurodegenerative disorders, highlights the role of iron and zinc in the human body and discusses cases of their imbalance leading to neurodegenerative changes as shown in vitro and in vivo studies as well as through relevant mechanisms.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Monika Waksmundzka-Hajnos
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
6
|
Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1642684. [PMID: 30363733 PMCID: PMC6180974 DOI: 10.1155/2018/1642684] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/31/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
Abstract
Over the last decade, the zebrafish (Danio rerio) has emerged as a model organism for cardiovascular research. Zebrafish have several advantages over mammalian models. For instance, the experimental cost of using zebrafish is comparatively low; the embryos are transparent, develop externally, and have high fecundity making them suitable for large-scale genetic screening. More recently, zebrafish embryos have been used for the screening of a variety of toxic agents, particularly for cardiotoxicity testing. Zebrafish has been shown to exhibit physiological responses that are similar to mammals after exposure to medicinal drugs including xenobiotics, hormones, cancer drugs, and also environmental pollutants, including pesticides and heavy metals. In this review, we provided a summary for recent studies that have used zebrafish to investigate the molecular mechanisms of drug-induced cardiotoxicity. More specifically, we focused on the techniques that were exploited by us and others for cardiovascular toxicity assessment and described several microscopic imaging and analysis protocols that are being used for the estimation of a variety of cardiac hemodynamic parameters.
Collapse
|