1
|
Shi H, Sun X, Wu Y, Cui Q, Sun S, Ji N, Liu Y. Targeting the tumor microenvironment in primary central nervous system lymphoma: Implications for prognosis. J Clin Neurosci 2024; 124:36-46. [PMID: 38642434 DOI: 10.1016/j.jocn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma, and there is limited research on its tumor microenvironment (TME). Nevertheless, more and more studies have evidence that TME has essential effects on tumor cell proliferation, immune escape, and drug resistance. Thus, it is critical to elucidate the role of TME in PCNSL. The understanding of the PCNSL TME is gradually unfolding, including factors that distinguish it from systemic diffuse large B-cell lymphoma (DLBCL). The TME in PCNSL exhibits both transcriptional and spatial intratumor heterogeneity. Cellular interactions between tumor cells and stroma cells reveal immune evasion signaling. The comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely to be an immunologically deficient tumor. In PCNSL, T cell exhaustion and downregulation of macrophage immune function are accompanied by suppressive microenvironmental factors such as M2 polarized macrophages, endothelin B receptor, HLA depletion, PD-L1, and TIM-3. MMP-9, Integrin-β1, and ICAM-1/LFA-1 play crucial roles in transendothelial migration towards the CNS, while CXCL13/CXCR5, CD44, MAG, and IL-8 are essential for brain parenchymal invasion. Further, macrophages, YKL-40, CD31, CD105, PD-1/PD-L1 axis, osteopontin, galectin-3, aggregative perivascular tumor cells, and HLA deletion may contribute to poor outcomes in patients with PCNSL. This article reviews the effect of various components of TME on the progression and prognosis of PCNSL patients to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Han Shi
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuchen Wu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shengjun Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Nan Ji
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China.
| |
Collapse
|
2
|
Soldan SS, Messick TE, Lieberman PM. Therapeutic approaches to Epstein-Barr virus cancers. Curr Opin Virol 2022; 56:101260. [PMID: 36174496 PMCID: PMC11058316 DOI: 10.1016/j.coviro.2022.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Epstein-Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease. Here, we review the challenges and recent advances in the development of EBV-specific therapeutics for treatment of EBV-associated cancers.
Collapse
|
3
|
Zhai Y, Zhou X, Wang X. Novel insights into the biomarkers and therapies for primary central nervous system lymphoma. Ther Adv Med Oncol 2022; 14:17588359221093745. [PMID: 35558005 PMCID: PMC9087239 DOI: 10.1177/17588359221093745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive extranodal type of non-Hodgkin lymphoma. After the introduction and widespread use of high-dose-methotrexate (HD-MTX)-based polychemotherapy, treatment responses of PCNSL have been improved. However, long-term prognosis for patients who have failed first-line therapy and relapsed remains poor. Less invasive diagnostic markers, including the circulating tumor DNAs (ctDNAs), microRNAs, metabolomic markers, and other novel biomarkers, such as a proliferation inducing ligand (APRIL) and B-cell activating factor of the TNF family (BAFF), have shown potential to distinguish PCNSL at an early stage, and some of them are related with prognosis to a certain extent. Recent insights into novel therapies, including Bruton tyrosine kinase (BTK) inhibitors, immunomodulatory drugs, immune checkpoint inhibitors, PI3K/mTOR inhibitors, and chimeric antigen receptor (CAR) T cells, have revealed encouraging efficacy in treatment response, whereas the duration of response and long-term survival of patients with relapsed or refractory PCNSL (r/r PCNSL) need further improvement. In addition, the diagnostic efficiency of novel markers and the antitumor efficacy of novel therapies are needed to be assessed further in larger clinical trials. This review provides an overview of recent research on novel diagnostic markers and therapeutic strategies for PCNSL.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, ChinaSchool of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
| |
Collapse
|
4
|
Roshandel E, Tavakoli F, Parkhideh S, Akhlaghi SS, Ardakani MT, Soleimani M. Post-hematopoietic stem cell transplantation relapse: Role of checkpoint inhibitors. Health Sci Rep 2022; 5:e536. [PMID: 35284650 PMCID: PMC8905133 DOI: 10.1002/hsr2.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/16/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background and Aims Despite the revolutionary effects of hematopoietic stem cell transplantation (HSCT) in treating hematological malignancies, post-HSCT relapse is considered a critical concern of clinicians. Residual malignant cells employ many mechanisms to evade immune surveillance and survive to cause relapse after transplantation. One of the immune-frustrating mechanisms through which malignant cells can compromise the antitumor effects is misusing the self-limiting system of immune response by overexpressing inhibitory molecules to interact with the immune cells, leading them to so-called "exhausted" and ineffective. Introduction of these molecules, known as immune checkpoints, and blocking them was a prodigious step to decrease the relapses. Methods Using keywords nivolumab, pembrolizumab, and ipilimumab, we investigated the literature to figure out the role of the immune checkpoints in the HSCT setting. Studies in which these agents were administrated for relapse after transplantation were reviewed. Factors such as the interval from the transplant to relapse, previous treatment history, adverse events, and the patients' outcome were extracted. Results Here we provided a mini-review discussing the experiences of three immune checkpoints, including nivolumab, pembrolizumab, and ipilimumab, as well as the pros and cons of using their blockers in relapse control after HSCT. In conclusion, it seems that CI therapy seems effective for this population. Future investigations may provide detailed outlook of this curative options.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Farzaneh Tavakoli
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Sedigheh Sadat Akhlaghi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Maria Tavakoli Ardakani
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Masoud Soleimani
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Steffanoni S, Batchelor TT. Targeting Bruton's tyrosine kinase in primary central nervous system lymphoma. Curr Opin Neurol 2021; 34:848-856. [PMID: 34581302 DOI: 10.1097/wco.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We review the preclinical and clinical experience with first and subsequent generation Bruton's tyrosine kinase inhibitors in B-cell lymphoproliferative diseases, highlighting the rationale for their clinical use in primary central nervous system diffuse large B-cell lymphoma (PCNSL). RECENT FINDINGS Growing knowledge on the molecular and genetic profile of PCNSL has provided the basis for new drug development targeting aberrantly activated oncogenic signal transduction pathways. PCNSL exhibits frequent genetic alterations of components of the B-cell and Toll-like receptor signalling pathways. On the basis of these discoveries and the limited efficacy obtained with chemotherapy in refractory and relapsed PCNSL, activity of new targeted agents, such as Bruton's tyrosine kinase inhibitors, has been explored with promising results. SUMMARY Innovative therapeutic strategies, applied in first line, have contributed to improved outcomes in patients with PCNSL, making this disease potentially curable in young and fit patients. However, response to induction therapies remains suboptimal and the best consolidative therapy has yet to be defined. In this regard, given the activity of Bruton's tyrosine kinase inhibitors in the refractory and relapsed PCNSL setting, these agents are currently being explored as part of combination regimens for induction therapy of newly diagnosed PCNSL.
Collapse
Affiliation(s)
- Sara Steffanoni
- Department of Medicine, Division of Hematology, Valduce Hospital, Como, Italy
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Calimeri T, Steffanoni S, Foppoli M, Ponzoni M, Ferreri AJM. Implications of recent molecular achievements in early diagnosis and precision treatments for primary CNS lymphoma. Expert Opin Ther Targets 2021; 25:749-760. [PMID: 34606736 DOI: 10.1080/14728222.2021.1988927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (PCNSL) represents a relevant challenge in onco-hematology. PCNSL has specific molecular profile and biological characteristics that distinguish it from systemic DLBCL. Several translational studies have allowed for significant improvement in the knowledge about its genomic and molecular profile. High-dose-methotrexate-based chemotherapy followed whole-brain irradiation or autologous stem cell transplantation is the most commonly used therapeutic approach in PCNSL patients.Areas covered: This work provides an overview of the new biomarkers of PCNSL, focusing on their potential diagnostic, predictive and prognostic role. Publications in English language, peer-reviewed, high-quality international journals, were identified on PubMed.Expert opinion: Early diagnosis, a better antitumor response definition and recognition of new effective treatments are important research fields aiming to improve PCNSL outcome and management. The acquisition of new molecular and genomic knowledge in PCNSL has allowed for the attainment of promising diagnostic and prognostic tools as well as the development of clinical trials with new therapeutic approaches beyond chemotherapy agents, which have demonstrated activity in refractory/relapsed PCNSL and deserve to be investigated in first-line therapy.
Collapse
Affiliation(s)
- Teresa Calimeri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Steffanoni
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Foppoli
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurilio Ponzoni
- Universita' di Medicina e Chirurgia, Vita -Salute San Raffaele, Milano, Italy.,Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Targeted Therapies and Immune Checkpoint Inhibitors in Primary CNS Lymphoma. Cancers (Basel) 2021; 13:cancers13123073. [PMID: 34203062 PMCID: PMC8234854 DOI: 10.3390/cancers13123073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
This review article outlines the current development of emerging treatment strategies for primary central nervous system lymphoma, a rare brain tumor with, thus far, limited therapeutic options. Small molecule targeted tyrosine kinase inhibitors, immunomodulatory agents, and immune checkpoint inhibitors will be discussed. The mechanisms of action, results of completed clinical studies, ongoing clinical trials, and future perspectives are summarized. Among the most promising clinical developments in the field of CNS lymphomas is ibrutinib, an inhibitor of Bruton's tyrosine kinase, which relays activation of nuclear factor kappa B upon integration of constitutive B cell receptor and Toll-like receptor signals. Down-stream of nuclear factor kappa B, the thalidomide analogs lenalidomide and pomalidomide exert immunomodulatory functions and are currently explored against CNS lymphomas. Finally, immune checkpoint inhibitors, such as drugs targeting the PD-1 pathway, may become novel therapeutic options to unleash anti-tumor immunity in patients with primary CNS lymphoma.
Collapse
|
8
|
Current and emerging therapies for primary central nervous system lymphoma. Biomark Res 2021; 9:32. [PMID: 33957995 PMCID: PMC8101140 DOI: 10.1186/s40364-021-00282-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) is a rare type of extranodal lymphoma exclusively involving the CNS at the onset, with diffuse large B-cell lymphoma (DLBCL) as the most common histological subtype. As PCNSL is a malignancy arising in an immune-privileged site, suboptimal delivery of systemic agents into tumor tissues results in poorer outcomes in PCNSL than in non-CNS DLBCLs. Commonly used regimens for PCNSL include high-dose methotrexate-based chemotherapy with rituximab for induction therapy and intensive chemotherapy followed by autologous hematopoietic stem cell transplantation or whole-brain radiotherapy for consolidation therapy. Targeted agents against the B-cell receptor signaling pathway, microenvironment immunomodulation and blood-brain barrier (BBB) permeabilization appear to be promising in treating refractory/relapsed patients. Chimeric antigen receptor-T cells (CAR-T cells) have been shown to penetrate the BBB as a potential tool to manipulate this disease entity while controlling CAR-T cell-related encephalopathy syndrome. Future approaches may stratify patients according to age, performance status, molecular biomarkers and cellular bioinformation. This review summarizes the current therapies and emerging agents in clinical development for PCNSL treatment.
Collapse
|
9
|
Tao K, Wang X, Tian X. Relapsed Primary Central Nervous System Lymphoma: Current Advances. Front Oncol 2021; 11:649789. [PMID: 33996566 PMCID: PMC8118624 DOI: 10.3389/fonc.2021.649789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma is an invasive malignant lymphoma confined to the central nervous system. Although patients undergoing first-line treatment can achieve complete response, most of them still relapse within two years. Relapsed lymphoma is derived from occult lymphoma cells, and B cell receptor pathway activation and immune escape are the key mechanisms for the pathogenesis of PCNSL. Most relapses are in the central nervous system, a small number of relapses are isolated systemic relapses, and clinical symptoms occur early and vary. Current treatments for relapse include high-dose methotrexate rechallenge and other regimens of chemotherapy, whole-brain radiation therapy, hematopoietic stem-cell transplantation, targeted therapy and immunotherapy, which have become promising treatments. The overall prognosis of relapsed PCNSL is very poor, although it is affected by many factors. This article summarizes the mechanisms, related factors, clinical features, follow-up, treatment and prognosis of relapsed primary central nervous system lymphoma.
Collapse
Affiliation(s)
- Kaiyan Tao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
10
|
Garcilazo-Reyes Y, Ibáñez-Juliá MJ, Hernández-Verdin I, Nguyen-Them L, Younan N, Houillier C, Hoang-Xuan K, Alentorn A. Treating central nervous system lymphoma in the era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1777853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ytel Garcilazo-Reyes
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Maria-José Ibáñez-Juliá
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Department of Neurology, CH Perpignan, Perpignan, France
| | | | - Ludovic Nguyen-Them
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Department of Neurology, CH Perpignan, Perpignan, France
| | - Nadia Younan
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
| | - Caroline Houillier
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Réseau Expert National LOC (Lymphomes Oculo-Cérébraux), Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Khê Hoang-Xuan
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
- Réseau Expert National LOC (Lymphomes Oculo-Cérébraux), Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Agusti Alentorn
- APHP, Department of Neurology-2, Groupe Hospitalier Pitié Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Yang H, Xun Y, Yang A, Liu F, You H. Advances and challenges in the treatment of primary central nervous system lymphoma. J Cell Physiol 2020; 235:9143-9165. [PMID: 32420657 DOI: 10.1002/jcp.29790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Primary central nervous system lymphoma (PCNSL), a rare variant of non-Hodgkin's lymphoma, is characterized by distinct biological characteristics and clinical behaviors, and patient prognosis is not satisfactory. The advent of high-dose (HD) methotrexate (HD-MTX) therapy has significantly improved PCNSL prognosis. Currently, HD-MTX-based chemotherapy regimens are recognized as first-line treatment. PCNSL is sensitive to radiotherapy, and whole-brain radiotherapy (WBRT) can consolidate response to chemotherapy; however, WBRT-associated delayed neurotoxicity leads to neurocognitive impairment, especially in elderly patients. Other effective approaches include rituximab, temozolomide, and autologous stem-cell transplantation (ASCT). In addition, new drugs against PCNSL such as those targeting the B-cell receptor signaling pathway, are undergoing clinical trials. However, optimal therapeutic approaches in PCNSL remain undefined. This review provides an overview of advances in surgical approaches, induction chemotherapy, radiotherapy, ASCT, salvage treatments, and novel therapeutic approaches in immunocompetent patients with PCNSL in the past 5 years. Additionally, therapeutic progress in elderly patients and in those with relapsed/refractory PCNSL is also summarized based on the outcomes of recent clinical studies.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Hua You
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Grasso C, Field CS, Tang CW, Ferguson PM, J Compton B, Anderson RJ, Painter GF, Weinkove R, F Hermans I, Berridge MV. Vaccines adjuvanted with an NKT cell agonist induce effective T-cell responses in models of CNS lymphoma. Immunotherapy 2020; 12:395-406. [PMID: 32316797 DOI: 10.2217/imt-2019-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The efficacy of anti-lymphoma vaccines that exploit the cellular adjuvant properties of activated natural killer T (NKT) cells were examined in mouse models of CNS lymphoma. Materials & methods: Vaccines were prepared by either loading the NKT cell agonist, α-galactosylceramide onto irradiated and heat-shocked B- and T-lymphoma cells, or chemically conjugating α-galactosylceramide to MHC-binding peptides from a lymphoma-associated antigen. Vaccine efficacy was analyzed in mice bearing intracranial tumors. Results: Both forms of vaccine proved to be effective in preventing lymphoma engraftment through activity of T cells that accessed the CNS. Established lymphoma was harder to treat with responses constrained by Tregs, but this could be overcome by depleting Tregs prior to vaccination. Conclusion: Simply designed NKT cell-activating vaccines enhance T-cell responses and have the potential to protect against CNS lymphoma development or prevent CNS relapse. To be effective against established CNS lymphoma, vaccines need to be combined with Treg suppression.
Collapse
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Cameron S Field
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Peter M Ferguson
- Melanoma Institute Australia, 40 Rocklands Road, Wollstonecraft, NSW 2065, Australia
| | - Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Regan J Anderson
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Wellington Blood & Cancer Centre, Capital & Coast District Health Board, P.O. Box 7902, Wellington 6242, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago Wellington, P.O. Box 7343, Wellington 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| |
Collapse
|
13
|
Differential expression of individual transcript variants of PD-1 and PD-L2 genes on Th-1/Th-2 status is guaranteed for prognosis prediction in PCNSL. Sci Rep 2019; 9:10004. [PMID: 31292525 PMCID: PMC6620277 DOI: 10.1038/s41598-019-46473-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
In current molecular medicine, next-generation sequencing (NGS) for transcript variant detection and multivariable analyses are valid methods for evaluating gene expression, cancer mechanisms, and prognoses of patients. We conducted RNA-sequencing on samples from patients with primary central nervous system lymphoma (PCNSL) using NGS and performed multivariable analysis on gene expression data and correlations focused on Th-1/Th-2 helper T cell balance and immune checkpoint to identify diagnosis/prognosis markers and cancer immune pathways in PCNSL. We selected 84 transcript variants to limit the analysis range for Th-1/Th-2 balance and stimulatory and inhibitory checkpoints in 31 PCNSLs. Of these, 21 highly-expressed transcript variants were composed of the formulas for prognoses based on Th-1/Th-2 status and checkpoint activities. Using formulas, Th-1low, Th-2high, and stimulatory checkpointhigh resulted in poor prognoses. Further, Th-1highTh-2low was associated with good prognoses. On the other hand, CD40-001high and CD70-001high as stimulatory genes, and LAG3-001high, PDCD1 (PD-1)-001/002/003high, and PDCD1LG2 (PD-L2)-201low as inhibitory genes were associated with poor prognoses. Interestingly, Th-1highTh-2low and Th-1lowTh-2high were correlated with stimulatory checkpointlow as CD70-001low and inhibitory checkpointlow as HAVCR2 (TIM-3)-001low and PDCD1LG2-001/201low, respectively. Focused on the inhibitory checkpoint, specific variants of CD274 (PD-L1)-001 and PDCD1-002 served severe hazard ratios. In particular, PDCD1-002high by a cut off score was associated with poor prognoses, in addition to PDCD1-001/003high, PDCD1LG2-201low, and LAG3-001high. These results mainly suggest that expression of transcript variants of PDCD1 and PDCD1LG2 on the Th-1/Th-2 balance enable prognostic prediction in PCNSL. This study provides insights for development of molecular target therapies and identification of diagnosis/prognosis markers in PCNSL.
Collapse
|
14
|
Autologous Stem Cell Transplantation in Central Nervous System Lymphoma: A Multicenter Retrospective Series and a Review of the Literature. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e273-e280. [DOI: 10.1016/j.clml.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
15
|
Castel M, Cotten C, Deschamps-Huvier A, Commin MH, Marguet F, Jardin F, Duval-Modeste AB, Joly P. [Primary central nervous system lymphoma following immunotherapy for metastatic melanoma]. Ann Dermatol Venereol 2019; 146:634-639. [PMID: 31122751 DOI: 10.1016/j.annder.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/06/2018] [Accepted: 04/16/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Anti-PD-1 and anti-CTLA-4 monoclonal antibodies are used in melanoma, while anti-PD-1 are also used in Hodgkin's lymphoma. Primary central nervous system lymphoma is a rare form of non-Hodgkin's lymphoma with few effective treatments. However, several recent studies have reported multiple cases of non-Hodgkin's lymphoma and primary central nervous system lymphoma treated by anti-PD-1 antibodies with favourable responses. PATIENTS AND METHODS This study focuses on the case of a 59-year-old man with metastatic melanoma treated by immunotherapy (anti-CTLA-4 followed by anti-PD-1). He underwent 28 courses of therapy with pembrolizumab. Treatment was stopped after clinical and radiological remission. The patient presented left hemiparesis and a primary central nervous system lymphoma was diagnosed two months after discontinuation of immunotherapy. He started urgent high-dose methotrexate chemotherapy but without significant results. Despite second-line chemotherapy with R-ICE (rituximab-ifosfamide, carboplatin and etoposide), the patient died. DISCUSSION Several hypotheses may be advanced regarding a possible relationship between immunotherapy and the occurrence of this primary central nervous system lymphoma. The lymphoma may have been pre-existing and controlled by immunotherapy, but progressing rapidly after treatment, or it may have been induced by the immunotherapy. However, immunotherapy may have played no role; the relationship between melanoma and lymphoma is well known. CONCLUSION While immunotherapy cannot be unequivocally incriminated in primary central nervous system lymphoma, this case raises many questions about the imputability of immunotherapy in the occurrence of secondary cancers, including lymphomas.
Collapse
Affiliation(s)
- M Castel
- Service de dermatologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - C Cotten
- Service de dermatologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| | - A Deschamps-Huvier
- Service de dermatologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| | - M-H Commin
- Service de dermatologie et service de pharmacovigilance, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| | - F Marguet
- Service d'anatomo-pathologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| | - F Jardin
- Service d'hématologie, centre Henri Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - A-B Duval-Modeste
- Service de dermatologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| | - P Joly
- Service de dermatologie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France
| |
Collapse
|