1
|
Gagelmann N, Quarder M, Badbaran A, Rathje K, Janson D, Lück C, Richter J, Marquard F, Oechsler S, Massoud R, Klyuchnikov E, Rudolph I, Schäfersküpper M, Niederwieser C, Heidenreich S, Berger C, Fehse B, Wolschke C, Ayuk F, Kröger N. Clearance of Driver Mutations after Transplantation for Myelofibrosis. N Engl J Med 2025; 392:150-160. [PMID: 39778169 DOI: 10.1056/nejmoa2408941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for myelofibrosis. Driver mutations are the pathophysiological hallmark of the disease, but the role of mutation clearance after transplantation is unclear. METHODS We used highly sensitive polymerase-chain-reaction technology to analyze the dynamics of driver mutations in peripheral-blood samples from 324 patients with myelofibrosis (73% with JAK2 mutations, 23% with CALR mutations, and 4% with MPL mutations) who were undergoing transplantation after reduced-intensity conditioning. Mutations were detected before transplantation and at 30, 100, and 180 days after transplantation to measure clearance and its effect on relapse and cure. The two primary end points were relapse and disease-free survival. RESULTS At day 30 after transplantation, mutation clearance was found in 42% of the patients who had JAK2 mutations, 73% of those who had CALR mutations, and 54% of those who had MPL mutations; the corresponding percentages at day 100 were 63%, 82%, and 100%. The cumulative incidence of relapse at 1 year was 6% (95% confidence interval [CI], 2 to 10) among patients with mutation clearance at day 30 after transplantation and 21% (95% CI, 15 to 27) among those without mutation clearance at day 30. Disease-free and overall survival at 6 years were 61% and 74%, respectively, among patients with mutation clearance at day 30 after transplantation and 41% and 60%, respectively, among those without mutation clearance at day 30. Mutation clearance at day 30 appeared to outperform traditional donor chimerism as a measure of response; it was independently associated with a reduced risk of relapse or progression (hazard ratio, 0.36; 95% CI, 0.21 to 0.61) and appeared to overcome differences in prognosis based on the type of driver mutation (JAK2 vs. MPL or CALR). CONCLUSIONS In patients with myelofibrosis, clearance of driver mutations at day 30 after transplantation appeared to influence relapse and survival, irrespective of the underlying driver mutation.
Collapse
Affiliation(s)
- Nico Gagelmann
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie Quarder
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Badbaran
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Rathje
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietlinde Janson
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherina Lück
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Richter
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Marquard
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sofia Oechsler
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Radwan Massoud
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evgeny Klyuchnikov
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ina Rudolph
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Schäfersküpper
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Niederwieser
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Heidenreich
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Berger
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Tefferi A, Vannucchi AM. CALR mutations possess unique prognostic relevance in myelofibrosis-before and after transplant. Bone Marrow Transplant 2024; 59:1-3. [PMID: 37821534 DOI: 10.1038/s41409-023-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Alessandro M Vannucchi
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| |
Collapse
|
3
|
Kröger N, Wolschke C, Gagelmann N. How I treat transplant-eligible patients with myelofibrosis. Blood 2023; 142:1683-1696. [PMID: 37647853 DOI: 10.1182/blood.2023021218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Despite the approval of Janus kinase inhibitors and novel agents for patients with myelofibrosis (MF), disease-modifying responses remain limited, and hematopoietic stem cell transplantation (HSCT) remains the only potentially curative treatment option. The number of HSCTs for MF continues to increase worldwide, but its inherent therapy-related morbidity and mortality limit its use for many patients. Furthermore, patients with MF often present at an older age, with cytopenia, splenomegaly, and severe bone marrow fibrosis, posing challenges in managing them throughout the HSCT procedure. Although implementation of molecular analyses enabled improved understanding of disease mechanisms and subsequently sparked development of novel drugs with promising activity, prospective trials in the HSCT setting are often lacking, making an evidence-based decision process particularly difficult. To illustrate how we approach patients with MF with respect to HSCT, we present 3 different clinical scenarios to capture relevant aspects that influence our decision making regarding indication for, or against, HSCT. We describe how we perform HSCT according to different risk categories and, furthermore, discuss our up-to-date approach to reduce transplant-related complications. Last, we show how to harness graft-versus-MF effects, particularly in the posttransplant period to achieve the best possible outcomes for patients.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Gagelmann N, Wolschke C, Badbaran A, Janson D, Berger C, Klyuchnikov E, Ayuk F, Fehse B, Kröger N. Donor Lymphocyte Infusion and Molecular Monitoring for Relapsed Myelofibrosis After Hematopoietic Cell Transplantation. Hemasphere 2023; 7:e921. [PMID: 37404772 PMCID: PMC10317484 DOI: 10.1097/hs9.0000000000000921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) is a curative approach for myelofibrosis patients, but relapse is a major cause of treatment failure. We investigated the effect of donor lymphocyte infusion (DLI) in 37 patients with molecular (n = 17) or hematological relapse (n = 20) after HCT. Patients received median of 2 (range, 1-5) cumulative DLI (total of 91 infusions). Median starting dose was 1 × 106 cells/kg, escalated by half-log ≥6 weeks if no response nor graft-versus-host disease (GvHD) occurred. Median time to first DLI was 40 weeks for molecular relapse versus 145 weeks for hematological relapse. Overall molecular complete response (mCR) at any time was 73% (n = 27) and was significantly higher for initial molecular relapse (88%) versus hematological relapse (60%; P = 0.05). The 6-year overall survival was 77% versus 32% (P = 0.03). Acute GvHD 2-4 occurred in 22% and half of the patients achieved mCR without any GvHD. All patients who relapsed from mCR achieved after first DLI could be salvaged with subsequent DLI, showing long-term survival. No second HCT was needed for molecular relapse versus 6 for hematological relapse. This comprehensive and largest study to date suggests molecular monitoring together with DLI as standard of care and a crucial approach to achieve excellent outcomes in relapsed myelofibrosis.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Badbaran
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietlinde Janson
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Berger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evgeny Klyuchnikov
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Gerds AT, Gotlib J, Ali H, Bose P, Dunbar A, Elshoury A, George TI, Gundabolu K, Hexner E, Hobbs GS, Jain T, Jamieson C, Kaesberg PR, Kuykendall AT, Madanat Y, McMahon B, Mohan SR, Nadiminti KV, Oh S, Pardanani A, Podoltsev N, Rein L, Salit R, Stein BL, Talpaz M, Vachhani P, Wadleigh M, Wall S, Ward DC, Bergman MA, Hochstetler C. Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:1033-1062. [PMID: 36075392 DOI: 10.6004/jnccn.2022.0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of myelofibrosis, polycythemia vera, and essential thrombocythemia and are a heterogeneous group of clonal blood disorders characterized by an overproduction of blood cells. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for MPN were developed as a result of meetings convened by a multidisciplinary panel with expertise in MPN, with the goal of providing recommendations for the management of MPN in adults. The Guidelines include recommendations for the diagnostic workup, risk stratification, treatment, and supportive care strategies for the management of myelofibrosis, polycythemia vera, and essential thrombocythemia. Assessment of symptoms at baseline and monitoring of symptom status during the course of treatment is recommended for all patients. This article focuses on the recommendations as outlined in the NCCN Guidelines for the diagnosis of MPN and the risk stratification, management, and supportive care relevant to MF.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Haris Ali
- City of Hope National Medical Center
| | | | | | | | | | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | | | | | | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Sarah Wall
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
6
|
Gagelmann N, Kröger N. Improving allogeneic stem cell transplantation in myelofibrosis. Int J Hematol 2022; 115:619-625. [PMID: 35419771 DOI: 10.1007/s12185-022-03340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
In this review, we will outline dimensions in which outcome of patients with myelofibrosis undergoing curative treatment can be optimized: patient selection, transplant procedure, and posttransplant prevention or treatment of relapse. For patient selection, fortunately, as with several other hematologic malignancies, the management of patients with myelofibrosis has very much entered the molecular era, with the establishment of several driver and nondriver mutations, allowing more individualized selection for treatment. For the transplant procedure itself, different conditioning intensities do not seem to play a distinctive role with regards to outcome posttransplant but still need to be compared in the molecular era. While many patients nowadays may receive ruxolitinib before transplant, recent studies may facilitate fine-tuning and integration of ruxolitinib into the transplant algorithm. The role of novel inhibitors for the transplant setting remains unclear. For the posttransplant phase, evidence remains scarce, with experiences of donor-lymphocyte infusions for relapse management but more efforts are needed in understanding relapse and identifying and treating patients at high risk for relapse.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
| |
Collapse
|
7
|
Bewersdorf JP, Sheth AH, Vetsa S, Grimshaw A, Giri S, Podoltsev NA, Gowda L, Tamari R, Tallman MS, Rampal RK, Zeidan AM, Stahl M. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients With Myelofibrosis-A Systematic Review and Meta-Analysis. Transplant Cell Ther 2021; 27:873.e1-873.e13. [PMID: 34052505 PMCID: PMC8478722 DOI: 10.1016/j.jtct.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/14/2023]
Abstract
Allogeneic hematopoietic cell transplant (allo-HCT) remains the only potentially curative therapeutic modality for patients with primary or secondary myelofibrosis (MF). However, many patients are considered ineligible for allo-HCT, and transplant-related mortality can be substantial. Data on the efficacy and safety of allo-HCT are mixed and largely derived from retrospective studies. We aimed to synthesize the available evidence on the safety and efficacy of allo-HCT in MF and to identify patient, disease, and transplant characteristics with prognostic impact on outcomes of patients with MF undergoing allo-HCT. For this systematic review and meta-analysis, Cochrane Library, Google Scholar, Ovid Medline, Ovid Embase, PubMed, Scopus, and Web of Science Core Collection were searched from inception to October 11, 2020, for studies on allo-HCT in MF. Random-effects models were used to pool response rates for the co-primary outcomes of 1-year, 2-year, and 5-year overall survival (OS). Rates of non-relapse mortality and acute and chronic graft-versus-host-disease (GVHD) were studied as secondary endpoints. Subgroup analyses on the effect of conditioning regimen intensity, baseline dynamic international prognostic scoring system (DIPSS) score, and patient age were performed. The study protocol has been registered on PROSPERO (CRD42020188706). Forty-three studies with 8739 patients were identified and included in this meta-analysis. Rates of 1-year, 2-year, and 5-year OS were 66.7% (95% confidence interval [CI], 63.5%-69.8%), 64.4% (95% CI, 57.6%-70.6%), and 55.0% (95% CI, 51.8%-58.3%), respectively. Rates of 1-year, 2-year, and 5-year nonrelapse mortality were 25.9% (95% CI, 23.3%-28.7%), 29.7% (95% CI, 24.5%-35.4%), and 30.5% (95% CI, 25.9%-35.5%), respectively. The combined rate of graft failure was 10.6% (95% CI, 8.9%-12.5%) with primary and secondary graft failure occurring in 7.3% (95% CI, 5.7%-9.4%) and 5.9% (95% CI, 4.3%-8.0%) of patients, respectively. Rates of acute and chronic graft-versus-host disease were 44.0% (95% CI, 39.6%-48.4%; grade III/IV: 15.2%) and 46.5% (95% CI, 42.2%-50.8%; extensive or moderate/severe: 26.1%), respectively. Subgroup analyses did not show any significant difference between conditioning regimen intensity (myeloablative versus reduced-intensity), median patient age, and proportion of DIPSS-intermediate-2/high patients. The quality of the evidence is limited by the absence of randomized clinical trials in the field and the heterogeneity of patient and transplant characteristics across included studies. Given the poor prognosis of patients not receiving transplants and in the absence of curative nontransplantation therapies, our results support consideration of allo-HCT for eligible patients with MF.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | | | - Shaurey Vetsa
- Yale School of Medicine, Department of Neurosurgery, New Haven, Connecticut
| | - Alyssa Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Smith Giri
- Division of Hematology and Oncology, University of Alabama School of Medicine
| | - Nikolai A Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Lohith Gowda
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut
| | - Roni Tamari
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raajit K Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut
| | - Maximilian Stahl
- Department of Medical Oncology, Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
8
|
Hernández‐Boluda J, Pereira A, Kröger N, Cornelissen JJ, Finke J, Beelen D, Witte M, Wilson K, Platzbecker U, Sengeloev H, Blaise D, Einsele H, Sockel K, Krüger W, Lenhoff S, Salaroli A, Martin H, García‐Gutiérrez V, Pavone V, Alvarez‐Larrán A, Raya J, Zinger N, Gras L, Hayden P, Czerw T, P. McLornan D, Yakoub‐Agha I. Allogeneic hematopoietic cell transplantation in older myelofibrosis patients: A study of the chronic malignancies working party of EBMT and the Spanish Myelofibrosis Registry. Am J Hematol 2021; 96:1186-1194. [PMID: 34152630 DOI: 10.1002/ajh.26279] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 01/13/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is increasingly used in older myelofibrosis (MF) patients, but its risk/benefit ratio compared to non-transplant approaches has not been evaluated in this population. We analyzed the outcomes of allo-HCT in 556 MF patients aged ≥65 years from the EBMT registry, and determined the excess mortality over the matched general population of MF patients ≥65 years managed with allo-HCT (n = 556) or conventional drug treatment (n = 176). The non-transplant cohort included patients with intermediate-2 or high risk DIPSS from the Spanish Myelofibrosis Registry. After a median follow-up of 3.4 years, the estimated 5-year survival rate, non-relapse mortality (NRM), and relapse incidence after transplantation was 40%, 37%, and 25%, respectively. Busulfan-based conditioning was associated with decreased mortality (HR: 0.7, 95% CI: 0.5-0.9) whereas the recipient CMV+/donor CMV- combination (HR: 1.7, 95% CI: 1.2-2.4) and the JAK2 mutated genotype (HR: 1.9, 95% CI: 1.1-3.5) predicted higher mortality. Busulfan-based conditioning correlated with improved survival due to less NRM, despite its higher relapse rate when compared with melphalan-based regimens. Excess mortality was higher in transplanted patients than in the non-HCT cohort in the first year of follow-up (ratio: 1.93, 95% CI: 1.13-2.80), whereas the opposite occurred between the fourth and eighth follow-up years (ratio: 0.31, 95% CI: 0.18-0.53). Comparing the excess mortality of the two treatments, male patients seemed to benefit more than females from allo-HCT, mainly due to their worse prognosis with non-transplant approaches. These findings could potentially enhance counseling and treatment decision-making in elderly transplant-eligible MF patients.
Collapse
Affiliation(s)
| | - Arturo Pereira
- Department of Hemotherapy and Hemostasis Hospital Clínic Barcelona Spain
| | - Nicolaus Kröger
- Hematology Department University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Jan J. Cornelissen
- Erasmus MC Cancer Center University Medical Center Rotterdam the Netherlands
| | - Jürgen Finke
- Medical Center University of Freiburg, Faculty of Medicine Freiburg Germany
| | | | - Moniek Witte
- Hematology Department University Medical Center Utrecht the Netherlands
| | - Keith Wilson
- Hematology Department University Hospital of Wales Cardiff UK
| | - Uwe Platzbecker
- Hematology Department University Hospital Leipzig Leipzig Germany
| | | | - Didier Blaise
- Hematology Department Institut Paoli Calmettes Marseille France
| | - Hermann Einsele
- Hematology Department Universitaetsklinikum Würzburg Wuerzburg Germany
| | - Katja Sockel
- Hematology Department University Hospital Dresden, TU Dresden Dresden Germany
| | - William Krüger
- Hematology Department Universitaetsklinikum Greifswald Greifswald Germany
| | - Stig Lenhoff
- Hematology Department Skanes University Hospital Lund Sweden
| | | | - Hans Martin
- Hematology Department Universitaetsklinikum Frankfurt Frankfurt Germany
| | | | | | | | - José‐María Raya
- Hematology Department Hospital Universitario de Canarias Tenerife Spain
| | | | - Luuk Gras
- EBMT Statistical Unit Leiden The Netherlands
| | - Patrick Hayden
- Hematology Department Trinity College Dublin, St. James's Hospital Dublin Ireland
| | - Tomasz Czerw
- Hematology Department Maria Skłodowska‐Curie National Research Institute of Oncology, Gliwice Branch Gliwice Poland
| | - Donal P. McLornan
- Hematology Department Guys' and St. Thomas' NHS Foundation Trust and University College London Hospitals London UK
| | - Ibrahim Yakoub‐Agha
- Hematology Department CHU de Lille, Université de Lille, INSERM U1286 Lille France
| |
Collapse
|
9
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
10
|
Downes K, Borry P, Ericson K, Gomez K, Greinacher A, Lambert M, Leinoe E, Noris P, Van Geet C, Freson K. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2020; 18:2751-2758. [PMID: 33079472 PMCID: PMC7589386 DOI: 10.1111/jth.14993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Molecular diagnostics of inherited platelet disorders (IPD) has been revolutionized by the implementation of high-throughput sequencing (HTS) approaches. A conclusive diagnosis using HTS tests can be obtained quickly and cost-effectively in many, but not all patients. The expanding use of HTS tests has raised concerns regarding complex variant interpretation and the ethical implications of detecting unsolicited findings such as variants in IPD genes RUNX1, ETV6, and ANKRD26, which are associated with increased leukemic risk. This guidance document has been developed and written by a multidisciplinary team of researchers and clinicians, with expertise in hematology, clinical and molecular genetics, and bioethics, alongside a RUNX1 patient advocacy representative. We recommend that for clinical diagnostics, HTS for IPD should use a multigene panel of curated diagnostic-grade genes. Critically, we advise that an HTS test for clinical diagnostics should only be ordered by a clinical expert that is: (a) fully aware of the complexity of genotype-phenotype correlations for IPD; (b) able to discuss these complexities with a patient and family members before the test is initiated; and (c) able to interpret and appropriately communicate the results of a HTS diagnostic report, including the implication of variants of uncertain clinical significance. Each patient should know what an HTS test could mean for his or her clinical management before initiating a test. We hereby propose an exemplified informed consent document that includes information on these ethical concerns and can be used by the community for implementation of HTS of IPD in a clinical diagnostic setting. This paper does not include recommendations for HTS of IPD in a research setting.
Collapse
Affiliation(s)
- Kate Downes
- East Genomic Laboratory HubCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Pascal Borry
- Department of Public Health and Primary CareKU LeuvenLeuvenBelgium
| | | | - Keith Gomez
- Haemophilia Centre and Thrombosis UnitRoyal Free London NHS Foundation TrustLondonUK
| | - Andreas Greinacher
- Institut für Immunologie und TransfusionsmedizinUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Michele Lambert
- Division of HematologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Leinoe
- Department of HaematologyRigshospitaletNational University HospitalCopenhagenDenmark
| | - Patrizia Noris
- IRCCS Policlinico San Matteo Foundation and University of PaviaPaviaItaly
| | - Chris Van Geet
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
11
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|