1
|
Tefferi A, Gangat N, Loscocco GG, Guglielmelli P, Szuber N, Pardanani A, Orazi A, Barbui T, Vannucchi AM. Essential Thrombocythemia: A Review. JAMA 2025; 333:701-714. [PMID: 39869325 DOI: 10.1001/jama.2024.25349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Importance Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons. Observations Patients with essential thrombocythemia have a persistent platelet count of 450 × 109/L or greater. The differential diagnosis includes myeloproliferative neoplasms (polycythemia vera, primary myelofibrosis, chronic myeloid leukemia); inflammatory conditions such as rheumatoid arthritis and systemic lupus erythematosus; infections; splenectomy; iron deficiency anemia; and solid tumors such as lung cancer. Approximately 90% of individuals with essential thrombocythemia have genetic variants that upregulate the JAK-STAT (signal transducer and activator of transcription 5) signaling pathway, including Janus kinase 2 (JAK2, 64%), calreticulin (CALR, 23%), and myeloproliferative leukemia virus oncogene (MPL, 4%). The median age at diagnosis of essential thrombocythemia is 59 years. The median overall survival exceeds 35 years in those diagnosed at 40 years or younger. Patients with essential thrombocythemia are at increased risk of arterial thrombosis (11%), venous thrombosis (7%), and hemorrhagic complications (8%). Thrombosis risk is increased among those with a history of thrombosis, age older than 60 years, a JAK2 gene variant, and cardiovascular risk factors (eg, hypertension, diabetes mellitus, hyperlipidemias, tobacco use). Use of aspirin (81-100 mg/d) is suggested for most patients with essential thrombocythemia to lower thrombosis risk. In a retrospective study of 300 affected patients with a low thrombosis risk (younger than 60 years with no prior thrombosis), those not taking aspirin (100 mg/d) had a risk of arterial thrombosis of 9.4/1000 patient-years and a venous thrombosis risk of 8.2/1000 patient years; cardiovascular risk factors were associated with a higher risk of arterial thrombi (incidence rate ratio, 2.5 [95% CI, 1.02-6.1]), and a JAK2 gene variant was associated with increased risk of venous thrombosis (incidence rate ratio, 4.0 [95% CI, 1.2-12.9]). In a randomized trial of 114 patients at higher risk for thrombosis (age older than 60 years or a prior thrombotic event), cytoreduction with hydroxyurea significantly lowered the risk of arterial or venous thrombotic events compared with no cytoreductive therapy (3.6% vs 24%; P < .01). At a median of 8.5 years from diagnosis, approximately 10% of patients with essential thrombocythemia develop myelofibrosis and about 3% develop acute myeloid leukemia. Conclusions Essential thrombocythemia is a rare clonal myeloproliferative neoplasm associated with an increased risk of venous and arterial thrombosis, hemorrhage, myelofibrosis, and acute myeloid leukemia. Based on individual risk factors for thrombosis, persons with essential thrombocythemia may be treated with low-dose aspirin, either alone or in combination with a cytoreductive drug such as hydroxyurea.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Giuseppe Gaetano Loscocco
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Paola Guglielmelli
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Natasha Szuber
- Division of Hematology, University of Montreal, Montreal, Quebec, Canada
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Attilio Orazi
- Texas Tech University Health Sciences Center, El Paso
| | - Tiziano Barbui
- Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandro Maria Vannucchi
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| |
Collapse
|
2
|
Gill H, Leung GMK, Ooi MGM, Teo WZY, Wong CL, Choi CW, Wong GC, Lao Z, Rojnuckarin P, Castillo MRID, Xiao Z, Hou HA, Kuo MC, Shih LY, Gan GG, Lin CC, Chng WJ, Kwong YL. Management of classical Philadelphia chromosome-negative myeloproliferative neoplasms in Asia: consensus of the Asian Myeloid Working Group. Clin Exp Med 2023; 23:4199-4217. [PMID: 37747591 DOI: 10.1007/s10238-023-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized clinically by the proliferation of one or more hematopoietic lineage(s). The classical Philadelphia-chromosome (Ph)-negative MPNs include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The Asian Myeloid Working Group (AMWG) comprises representatives from fifteen Asian centers experienced in the management of MPN. This consensus from the AMWG aims to review the current evidence in the risk stratification and treatment of Ph-negative MPN, to identify management gaps for future improvement, and to offer pragmatic approaches for treatment commensurate with different levels of resources, drug availabilities and reimbursement policies in its constituent regions. The management of MPN should be patient-specific and based on accurate diagnostic and prognostic tools. In patients with PV, ET and early/prefibrotic PMF, symptoms and risk stratification will guide the need for early cytoreduction. In younger patients requiring cytoreduction and in those experiencing resistance or intolerance to hydroxyurea, recombinant interferon-α preparations (pegylated interferon-α 2A or ropeginterferon-α 2b) should be considered. In myelofibrosis, continuous risk assessment and symptom burden assessment are essential in guiding treatment selection. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in MF should always be based on accurate risk stratification for disease-risk and post-HSCT outcome. Management of classical Ph-negative MPN entails accurate diagnosis, cytogenetic and molecular evaluation, risk stratification, and treatment strategies that are outcome-oriented (curative, disease modification, improvement of quality-of-life).
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Pok Fu Lam, Hong Kong, China.
| | - Garret M K Leung
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Melissa G M Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Winnie Z Y Teo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Fast and Chronic Program, Alexandra Hospital, Singapore, Singapore
| | - Chieh-Lee Wong
- Department of Medicine, Sunway Medical Centre, Shah Alam, Selangor, Malaysia
| | - Chul Won Choi
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Gee-Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Zhentang Lao
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Ponlapat Rojnuckarin
- King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | - Zhijian Xiao
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences Peking Union Medical College, Tianjin, China
| | - Hsin-An Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chung Kuo
- Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Gin Gan
- University of Malaya, Kuala Lumpur, Malaysia
| | - Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wee-Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Yok-Lam Kwong
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
3
|
Rienhoff HY, Gill H. Bomedemstat as an investigative treatment for myeloproliferative neoplasms. Expert Opin Investig Drugs 2023; 32:879-886. [PMID: 37804041 DOI: 10.1080/13543784.2023.2267980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasm (MPN) is a heterogeneous group of hematopoietic stem cell disorders characterized by clonal proliferation of one of more of the hematopoietic stem cell lineages. Clinical manifestations result from uncontrolled myeloproliferation, extramedullary hematopoiesis with splenomegaly and excessive inflammatory cytokine production. Currently available therapy improves hematologic parameters and symptoms but does not adequately address the underlying neoplastic biology. Bomedemstat has thus far demonstrated clinical efficacy and tolerability in the treatment of MPNs with recent evidence of impacting the malignant stem cell population. AREAS COVERED This review summarizes the mechanisms of action, pharmacokinetics and pharmacodynamics, safety and efficacy of bomedemstat in MPN with specific emphasis on essential thrombocythemia (ET) and myelofibrosis (MF). EXPERT OPINION In patients with MPNs, bomedemstat appears effective and well tolerated. The signs and symptoms of these diseases are managed as a reduction in the frequency of mutant cells was demonstrated in patients with ET and MF. Ongoing and planned studies of bomedemstat in MPN will establish the position of bomedemstat in MPNs and may help to redefine treatment endpoints of MPNs in the future.
Collapse
Affiliation(s)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Ajufo HO, Waksal JA, Mascarenhas JO, Rampal RK. Treating accelerated and blast phase myeloproliferative neoplasms: progress and challenges. Ther Adv Hematol 2023; 14:20406207231177282. [PMID: 37564898 PMCID: PMC10410182 DOI: 10.1177/20406207231177282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/03/2023] [Indexed: 08/12/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of clonal hematologic malignancies that include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). MPNs are characterized by activating mutations in the JAK/STAT pathway and an increased risk of transformation to an aggressive form of acute leukemia, termed MPN-blast phase (MPN-BP). MPN-BP is characterized by the presence of ⩾20% blasts in the blood or bone marrow and is almost always preceded by an accelerated phase (MPN-AP) defined as ⩾10-19% blasts in the blood or bone marrow. These advanced forms of disease are associated with poor prognosis with a median overall survival (mOS) of 3-5 months in MPN-BP and 13 months in MPN-AP. MPN-AP/BP has a unique molecular landscape characterized by increased intratumoral complexity. Standard therapies used in de novo acute myeloid leukemia (AML) have not demonstrated improvement in OS. Allogeneic hematopoietic stem cell transplant (HSCT) remains the only curative therapy but is associated with significant morbidity and mortality and infrequently utilized in clinical practice. Therefore, an urgent unmet need persists for effective therapies in this advanced phase patient population. Here, we review the current management and future directions of therapy in MPN-AP/BP.
Collapse
Affiliation(s)
- Helen O. Ajufo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian A. Waksal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John O. Mascarenhas
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA
| | | |
Collapse
|
5
|
Puglianini OC, Peker D, Zhang L, Papadantonakis N. Essential Thrombocythemia and Post-Essential Thrombocythemia Myelofibrosis: Updates on Diagnosis, Clinical Aspects, and Management. Lab Med 2023; 54:13-22. [PMID: 35960786 DOI: 10.1093/labmed/lmac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although several decades have passed since the description of myeloproliferative neoplasms (MPN), many aspects of their pathophysiology have not been elucidated. In this review, we discuss the mutational landscape of patients with essential thrombocythemia (ET), prognostic scores and salient pathology, and clinical points. We discuss also the diagnostic challenges of differentiating ET from prefibrotic MF. We then focus on post-essential thrombocythemia myelofibrosis (post-ET MF), a rare subset of MPN that is usually studied in conjunction with post-polycythemia vera MF. The transition of ET to post-ET MF is not well studied on a molecular level, and we present available data. Patients with secondary MF could benefit from allogenic hematopoietic stem cell transplantation, and we present available data focusing on post-ET MF.
Collapse
Affiliation(s)
- Omar Castaneda Puglianini
- H. Lee Moffitt Cancer Center & Research Institute, Department of Blood & Marrow Transplant & Cellular Immunotherapy, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Deniz Peker
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikolaos Papadantonakis
- Winship Cancer Institute of Emory University, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| |
Collapse
|
6
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, Schiöth HB. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharmacol 2022; 13:1057083. [PMID: 36506513 PMCID: PMC9731127 DOI: 10.3389/fphar.2022.1057083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.
Collapse
Affiliation(s)
- Andrey D. Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden,*Correspondence: Helgi B. Schiöth,
| |
Collapse
|
7
|
Rippel N, Tremblay D, Zubizarreta N, Podoltsev N, Gotlib J, Heaney M, Kuykendall A, O'Connell C, Shammo JM, Fleischman A, Kremyanskaya M, Hoffman R, Mesa R, Yacoub A, Mascarenhas J. Anagrelide for platelet-directed cytoreduction in polycythemia vera: Insights into utility and safety outcomes from a large multi-center database. Leuk Res 2022; 119:106903. [PMID: 35717689 PMCID: PMC11583043 DOI: 10.1016/j.leukres.2022.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Anagrelide (ANA) is a platelet-specific cytoreductive agent utilized in the guideline-directed management of high-risk essential thrombocythemia. In the context of polycythemia vera (PV), ANA is occasionally employed in clinical practice, although data has not consistently demonstrated a benefit to targeting a platelet goal as a therapeutic endpoint. The aim of the current study was to delineate the patterns of ANA use in PV, and to describe outcomes and toxicities. Within a multi-center cohort of 527 patients with PV, 48 received ANA (9 excluded for absent data). 27 (69.2%) had high-risk PV, 10 (25.6%) had prior thrombosis, and none had extreme thrombocytosis, acquired von Willebrand disease, and/or documented resistance to hydroxyurea. While ANA effectively lowered median platelet count, 43.5% of patients had an unresolved thrombocytosis at time of ANA discontinuation. Treatment-emergent adverse events-including headaches, cardiac palpitations and arrhythmias, nausea, vomiting and/or diarrhea-led to ANA discontinuation in 76.9% of patients. Further, three patients experienced arterial thromboses during a median duration of 27.5 months of ANA therapy. In conclusion, this study highlights ANA's restrictive tolerability profile which, compounded by the absence of clear advantage to strict platelet control in PV, suggests the use of ANA should be limited in this setting.
Collapse
Affiliation(s)
- Noa Rippel
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Zubizarreta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, New York, NY, USA
| | - Nikolai Podoltsev
- Hematology Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Heaney
- Columbia University Medical Center, New York, NY, USA
| | | | - Casey O'Connell
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Jamile M Shammo
- Department of Internal Medicine, Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Angela Fleischman
- Irvine Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruben Mesa
- Department of Hematology and Oncology, Mays MD Anderson Cancer Center at UT Health San Antonio, San Antonio, TX, USA
| | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Essential Thrombocythemia in Children and Adolescents. Cancers (Basel) 2021; 13:cancers13236147. [PMID: 34885256 PMCID: PMC8656963 DOI: 10.3390/cancers13236147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Among chronic Ph-negative myeloproliferative neoplasms, essential thrombocythemia is found in children with low but increasing incidence. The diagnostic and clinical features do not completely overlap with ET of adult age. A significant number of cases, in fact, do not meet the criteria of clonality, and many cases require extensive clinical evaluation to exclude secondary, reactive forms. Therefore, histological analysis of bone marrow biopsy is necessary, and its use should be enforced. The clinical course appears to be more benign, at least within the first decades of observation, with the incidence of thrombotic events being much lower than in adults (4 % vs. 30%). Hemorrhages are mostly irrelevant. Therefore, the management should be carefully adapted to the individual patient, balancing the risk of future complications with long-term collateral effects of any drug. This review analyzes the peculiarities of the disease facing similarities and differences with adult scenarios. Abstract This paper reviews the features of pediatric essential thrombocythemia (ET). ET is a rare disease in children, challenging pediatric and adult hematologists alike. The current WHO classification acknowledges classical Philadelphia-negative MPNs and defines diagnostic criteria, mainly encompassing adult cases. The presence of one of three driver mutations (JAK2V617F, CALR, and MPL mutations) represent the proof of clonality typical of ET. Pediatric ET cases are thus usually confronted by adult approaches. These can fit only some patients, because only 25–40% of cases present one of the driver mutations. The diagnosis of hereditary, familial thrombocytosis and the exclusion of reactive/secondary thrombocytosis must be part of the diagnostic process in children and can clarify most of the negative cases. Still, many children present a clinical, histological picture of ET, with a molecular triple wild-type status. Moreover, prognosis seems more benign, at least within the first few decades of follow-up. Thrombotic events are rare, and only minor hemorrhages are ordinarily observed. As per the management, the need to control symptoms must be balanced with the collateral effects of lifelong drug therapy. We conclude that these differences concert a compelling case for a very careful therapeutic approach and advocate for the importance of further cooperative studies.
Collapse
|
9
|
Peng C, Zhou Y, Cao S, Pant A, Campos Guerrero ML, McDonald P, Roy A, Yang Z. Identification of Vaccinia Virus Inhibitors and Cellular Functions Necessary for Efficient Viral Replication by Screening Bioactives and FDA-Approved Drugs. Vaccines (Basel) 2020; 8:vaccines8030401. [PMID: 32708182 PMCID: PMC7564539 DOI: 10.3390/vaccines8030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Four decades after the eradication of smallpox, poxviruses continue to threaten the health of humans and other animals. Vaccinia virus (VACV) was used as the vaccine that successfully eradicated smallpox and is a prototypic member of the poxvirus family. Many cellular pathways play critical roles in productive poxvirus replication. These pathways provide opportunities to expand the arsenal of poxvirus antiviral development by targeting the cellular functions required for efficient poxvirus replication. In this study, we developed and optimized a secreted Gaussia luciferase-based, simplified assay procedure suitable for high throughput screening. Using this procedure, we screened a customized compound library that contained over 3200 bioactives and FDA (Food and Drug Administration)-approved chemicals, most having known cellular targets, for their inhibitory effects on VACV replication. We identified over 140 compounds that suppressed VACV replication. Many of these hits target cellular pathways previously reported to be required for efficient VACV replication, validating the effectiveness of our screening. Importantly, we also identified hits that target cellular functions with previously unknown roles in the VACV replication cycle. Among those in the latter category, we verified the antiviral role of several compounds targeting the janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3) signaling pathway by showing that STAT3 inhibitors reduced VACV replication. Our findings identify pathways that are candidates for use in the prevention and treatment of poxvirus infections and additionally provide a foundation to investigate diverse cellular pathways for their roles in poxvirus replications.
Collapse
Affiliation(s)
- Chen Peng
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Yanan Zhou
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Anil Pant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Marlene L. Campos Guerrero
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
- Correspondence:
| |
Collapse
|