1
|
Song CH, Lin CW, Han KH. Cell cycle-based antibody selection for suppressing cancer cell growth. FASEB J 2025; 39:e70402. [PMID: 39953793 DOI: 10.1096/fj.202401586rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cell cycle arrest and programmed cell death are crucial biological processes in cancer development. Regulating cell fate decisions is essential due to their potential to induce cell cycle arrest and cell death. Inducing cell cycle regulatory proteins in tumor cells is considered a key objective in cancer therapy. Here, we present a novel method that selects antibodies from an antibody library to inhibit cancer growth using fluorescence-activated cell sorting (FACS) assays and cell cycle analysis. This approach seeks antibodies that induce cancer cells to enter the G0 or G1 phase, a quiescent state where cells cease to proliferate and trigger programmed cell death. We found that the T1 antibody effectively suppresses the proliferation of cancer cells. Mechanistically, serine protease 3 (PRSS3) is a target antigen of the T1 antibody. We demonstrated that PRSS3 controls tumor cell proliferation and apoptosis through interaction with the T1 antibody. This research suggests that PRSS3 holds great potential as a target for solid cancer treatment. This cycle-based approach to antibody screening shows potential because it can be broadly applied to cancer and other challenging diseases.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
2
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Mao Y, Chen Y, Yang X, He Y, Cui D, Huang W, Jiang L, Zhou X, Chang X, Zhu J, Zhu Y, Tang Q, Feng Z, Zhang L, Jiang K, Yuan H. Construction and characterization of a novel secreted MsC-CAR-T cell in solid tumors. Cancer Lett 2024; 611:217382. [PMID: 39642980 DOI: 10.1016/j.canlet.2024.217382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The CD47-SIRPα signaling has been acknowledged as a significant immune checkpoint and CD47 blocking has been proved as a potential therapeutic strategy for the treatment of solid tumor. However, the potential application of CAR-T cells secreted antibody fragment simultaneously in solid tumor is rarely explored. In this study, we searched bioinformatic databases and investigated the characteristics of CD47 in solid tumors. Then we consulted bioinformatic databases to design, optimize and construct a novel MsC-CAR which could target MAGE-A1 and self-secrete CD47-scFv. The engineering T cells containing MsC-CAR were transfected, verified and characterized. The tumor-inhibitory role of MsC-CART cells was further determined in vitro and in vivo. The results showed that MsC-CARs were successfully constructed and MsC1-CARs demonstrated the preferable features of recognizing MAGE-A1 and secreting CD47-scFv. Engineering T cells transfecting with MsC1-CAR (MsC1-CART cells) exerted the prominent tumor-inhibitory effectiveness, both in different cancer cell lines and LUAD xenograft tumors. The present data highlighted that MsC1-CART cells elaborately combined the adoptive cellular immunotherapy and immune checkpoint inhibitor therapy, may represent a new direction for the treatment of MAGE-A1 positive solid tumors.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Yufeng Chen
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Department of Pathology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xiaohui Yang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Yiting He
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Daixun Cui
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Wen Huang
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Jiang
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhou
- Department of Pathology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xinxia Chang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Yi Zhu
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Tang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China; Department of Pathology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China.
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hao Yuan
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Yu XJ, Liu C, Hu SZ, Yuan ZY, Ni HY, Sun SJ, Hu CY, Zhan HQ. Application of CAR-T cell therapy in B-cell lymphoma: a meta-analysis of randomized controlled trials. Clin Transl Oncol 2024:10.1007/s12094-024-03774-0. [PMID: 39514165 DOI: 10.1007/s12094-024-03774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This study aims to compare the efficacy and safety of chimeric antigen receptor T-cell (CAR-T) immunotherapy with standard treatment for B-cell lymphoma, providing evidence-based support for the more efficient use of CAR-T cell immunotherapy. METHODS We conducted a comprehensive literature search of high-quality randomized controlled trials (RCTs) on CAR-T therapy for B-cell lymphoma in the following databases: Wanfang, Web of Science, CNKI, VIP database, and PubMed, up to February 2024. The outcome measures included objective remission rate (ORR), complete remission rate (CRR), and incidence of adverse reactions. Subgroup analysis was performed based on the differences in co-stimulatory domains. Meta-analysis was conducted using Review Manager 5.4 and Stata software. RESULTS A total of five RCTs involving 1670 patients were included in this meta-analysis. The results showed that the CAR-T treatment group had significantly higher ORR (RR: 1.47, 95% CI 1.23-1.76, I2 = 80%, p < 0.0001), CRR (RR: 2.19, 95% CI 2.16-3.79, I2 = 93%, p = 0.005), cytokine release syndrome (CRS) incidence (RR: 34.51, 95% CI 2.27-523.78, I2 = 98%, p = 0.01), neurotoxicity (NT) incidence (RR: 6.00, 95% CI 1.82-19.75, I2 = 80%, p = 0.003), neutropenia incidence (RR: 1.39, 95% CI 1.02-1.88, I2 = 93%, p = 0.03), leukopenia incidence (RR: 1.39, 95% CI 1.04-1.87, I2 = 61%, p = 0.03), and headache incidence (RR: 1.56, 95% CI 1.25-1.95, I2 = 34%, p < 0.0001) compared to the standard treatment group. Subgroup analysis based on co-stimulatory domains revealed that the 4-1BB subgroup had higher incidences of CRR, CRS, NT and leukopenia than the CD28 subgroup; however, the CD28 subgroup exhibited higher ORR and neutropenia than the 4-1BB subgroup. CONCLUSION CAR-T cell immunotherapy demonstrates superior efficacy compared to standard therapy in treating B-cell lymphoma. However, CAR-T treatment can lead to adverse reactions such as CRS and NT. Infusion of an appropriate dose of CAR-T cells (e.g., 100 × 106) may be a strategy to mitigate the risk of CRS and NT.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Chang Liu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shi-Zhi Hu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhan-Yuan Yuan
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hai-Yan Ni
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Sheng-Jia Sun
- Clinical Medical College of Anhui Medical University, Hefei, 230031, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, 230032, China.
| | - He-Qin Zhan
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Leache L, Gutiérrez Valencia M, Saiz LC, Erviti J, Rojas Reyes MX. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies: a living systematic review (protocol). OPEN RESEARCH EUROPE 2024; 2:38. [PMID: 38827275 PMCID: PMC11140298 DOI: 10.12688/openreseurope.14390.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Objective To determine the efficacy and safety of CAR-T therapy in the treatment of patients with hematologic malignancies, in comparison with other current therapies. Design A living systematic review. Methods We will include randomized trials evaluating the effect of CAR-T therapy versus other active treatments, hematopoietic stem cell transplantation, best supportive care or any other intervention in patients with hematologic malignancies. Non-randomized primary studies will be searched in case we found no direct evidence from randomized controlled trials. Two reviewers will independently screen each study for eligibility, extract data, and assess the risk of bias. Efficacy measures will include overall survival rate, overall response rate, complete response/remission (CR) rate, partial response/remission (PR) rate, relapse from CR, progression-free survival, and time from CAR-T infusion to transplantation. Safety measures will include serious adverse events, the incidence of cytokine release syndrome, graft-versus-host disease, neurotoxicity, and total adverse events. Quality of life will also be assessed. Meta-analyses will be carried out to summarize the results. We will apply the GRADE approach to assess the certainty of the evidence for each outcome. A living, web-based version of this review will be openly available until there is solid evidence to respond to the review objective. We will resubmit it for publication every time the conclusions change or whenever there are substantial updates.
Collapse
Affiliation(s)
- Leire Leache
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Marta Gutiérrez Valencia
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Luis Carlos Saiz
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Juan Erviti
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Maria Ximena Rojas Reyes
- Institut d'Recerca-Servei d'Epidemiologia Clínica i Salut Pública, Hospital de la Santa Creu i Sant Pau, Barcelona, Carrer de Sant Quintí, 08041, Spain
| |
Collapse
|
6
|
Torres Chavez AG, McKenna MK, Balasubramanian K, Riffle L, Patel NL, Kalen JD, St. Croix B, Leen AM, Bajgain P. A dual-luciferase bioluminescence system for the assessment of cellular therapies. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200763. [PMID: 38596291 PMCID: PMC10869576 DOI: 10.1016/j.omton.2024.200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Bioluminescence imaging is a well-established platform for evaluating engineered cell therapies in preclinical studies. However, despite the discovery of new luciferases and substrates, optimal combinations to simultaneously monitor two cell populations remain limited. This makes the functional assessment of cellular therapies cumbersome and expensive, especially in preclinical in vivo models. In this study, we explored the potential of using a green bioluminescence-emitting click beetle luciferase, CBG99, and a red bioluminescence-emitting firefly luciferase mutant, Akaluc, together to simultaneously monitor two cell populations. Using various chimeric antigen receptor T cells and tumor pairings, we demonstrate that these luciferases are suitable for real-time tracking of two cell types using 2D and 3D cultures in vitro and experimental models in vivo. Our data show the broad compatibility of this dual-luciferase (duo-luc) system with multiple bioluminescence detection equipment ranging from benchtop spectrophotometers to live animal imaging systems. Although this study focused on investigating complex CAR T cells and tumor cell interactions, this duo-luc system has potential utility for the simultaneous monitoring of any two cellular components-for example, to unravel the impact of a specific genetic variant on clonal dominance in a mixed population of tumor cells.
Collapse
Affiliation(s)
| | - Mary K. McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lisa Riffle
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Favaloro EJ. Evolution of Hemostasis Testing: A Personal Reflection Covering over 40 Years of History. Semin Thromb Hemost 2024; 50:8-25. [PMID: 36731486 DOI: 10.1055/s-0043-1761487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is no certainty in change, other than change is certain. As Seminars in Thrombosis and Hemostasis celebrates 50 years of publication, I felt it appropriate to reflect on my own 40-year plus scientific career. My career in the thrombosis and hemostasis field did not start until 1987, but the subsequent 35 years reflected a period of significant change in associated disease diagnostics. I started in the Westmead Hospital "coagulation laboratory" when staff were still performing manual clotting tests, using stopwatches, pipettes, test tubes, and a water bath, which we transported to the hospital outpatient department to run our weekly warfarin clinic. Several hemostasis instruments have come and gone, including the Coag-A-Mate X2, the ACL-300R, the MDA-180, the BCS XP, and several StaR Evolution analyzers. Some instruments remain, including the PFA-100, PFA-200, the AggRAM, the CS-5100, an AcuStar, a Hydrasys gel system, and two ACL-TOP 750s. We still have a water bath, but this is primarily used to defrost frozen samples, and manual clotting tests are only used to teach visiting medical students. We have migrated across several methodologies in the 45-year history of the local laboratory. Laurel gel rockets, used for several assays in the 1980s, were replaced with enzyme-linked immunosorbent assay assays and most assays were eventually placed on automated instruments. Radio-isotopic assays, used in the 1980s, were replaced by an alternate safer method or else abandoned. Test numbers have increased markedly over time. The approximately 31,000 hemostasis assays performed at the Westmead-based laboratory in 1983 had become approximately 200,000 in 2022, a sixfold increase. Some 90,000 prothrombin times and activated partial thromboplastic times are now performed at this laboratory per year. Thrombophilia assays were added to the test repertoires over time, as were the tests to measure several anticoagulant drugs, most recently the direct oral anticoagulants. I hope my personal history, reflecting on the changes in hemostasis testing over my career to date in the field, is found to be of interest to the readership, and I hope they forgive any inaccuracies I have introduced in this reflection of the past.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, NSW Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
8
|
Cai F, Zhang J, Gao H, Shen H. Tumor microenvironment and CAR-T cell immunotherapy in B-cell lymphoma. Eur J Haematol 2024; 112:223-235. [PMID: 37706523 DOI: 10.1111/ejh.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric receptor antigen T cell (CAR-T cell) therapy has demonstrated effectiveness and therapeutic potential in the immunotherapy of hematological malignancies, representing a promising breakthrough in cancer treatment. Despite the efficacy of CAR-T cell therapy in B-cell lymphoma, response variability, resistance, and side effects remain persistent challenges. The tumor microenvironment (TME) plays an intricate role in CAR-T cell therapy of B-cell lymphoma. The TME is a complex and dynamic environment that includes various cell types, cytokines, and extracellular matrix components, all of which can influence CAR-T cell function and behavior. This review discusses the design principles of CAR-T cells, TME in B-cell lymphoma, and the mechanisms by which TME influences CAR-T cell function. We discuss emerging strategies aimed at modulating the TME, targeting immunosuppressive cells, overcoming inhibitory signaling, and improving CAR-T cell infiltration and persistence. Therefore, these processes enhance the efficacy of CAR-T cell therapy and improve patient outcomes in B-cell lymphoma. Further research will be needed to investigate the molecular and cellular events that occur post-infusion, including changes in TME composition, immune cell interactions, cytokine signaling, and potential resistance mechanisms. Understanding these processes will contribute to the development of more effective CAR-T cell therapies and strategies to mitigate treatment-related toxicities.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfeng Zhang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Joint Research Center for Immune Landscape and Precision Medicine in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Del Duca F, Napoletano G, Volonnino G, Maiese A, La Russa R, Di Paolo M, De Matteis S, Frati P, Bonafè M, Fineschi V. Blood-brain barrier breakdown, central nervous system cell damage, and infiltrated T cells as major adverse effects in CAR-T-related deaths: a literature review. Front Med (Lausanne) 2024; 10:1272291. [PMID: 38259840 PMCID: PMC10800871 DOI: 10.3389/fmed.2023.1272291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Background CAR-T-related deaths observed worldwide are rare. The underlying pathogenetic mechanisms are the subject of study, as are the findings that enable diagnosis. A systematic literature search of the PubMed database and a critical review of the collected studies were conducted from the inception of this database until January 2023. The aim of the study is to determine when death is related to CAR-T cell therapy and to develop a shareable diagnostic algorithm. Methods The database was searched by combining and meshing the terms ("CAR-t" OR "CART") AND ("Pathology" OR "Histology" OR "Histological" OR "Autopsy") AND ("Heart" OR "Cardiac" OR "Nervous System" OR "Kidney" OR "Liver") with 34 results and also the terms: [(Lethal effect) OR (Death)] AND (CAR-T therapy) with 52 results in titles, abstracts, and keywords [all fields]. One hundred scientific articles were examined, 14 of which were additional records identified through other sources. Fifteen records were included in the review. Results Neuronal death, neuronal edema, perivascular edema, perivascular and intraparenchymal hemorrhagic extravasation, as well as perivascular plasmatodendrosis, have been observed in cases with fatal cerebral edema. A cross-reactivity of CAR-T cells in cases of fatal encephalopathy can be hypothesized when, in addition to the increased vascular permeability, there is also a perivascular lymphocyte infiltrate, which appears to be a common factor among most authors. Conclusion Most CAR-T-related deaths are associated with blood-brain barrier breakdown, central nervous system cell damage, and infiltrated T cells. Further autopsies and microscopic investigations would shed more light on the lethal toxicity related to CAR-T cells. A differential diagnosis of CAR-T-related death is crucial to identifying adverse events. In this article, we propose an algorithm that could facilitate the comparison of findings through a systematic approach. Despite toxicity cases, CAR-T therapy continues to stand out as the most innovative treatment within the field of oncology, and emerging strategies hold the promise of delivering safer therapies in future.
Collapse
Affiliation(s)
- Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Aniello Maiese
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Di Paolo
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Serena De Matteis
- Immunobiology of Transplants and Advanced Cellular Therapies Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Bonafè
- Immunobiology of Transplants and Advanced Cellular Therapies Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|
11
|
Saiz LC, Leache L, Gutiérrez-Valencia M, Erviti J, Rojas Reyes MX. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies: a living systematic review on comparative studies. Ther Adv Hematol 2023; 14:20406207231168211. [PMID: 37138698 PMCID: PMC10150428 DOI: 10.1177/20406207231168211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/05/2023] [Indexed: 05/05/2023] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) cell therapies have been claimed to be curative in responsive patients. Nonetheless, response rates can vary according to different characteristics, and these therapies are associated with important adverse events such as cytokine release syndrome, neurologic adverse events, and B-cell aplasia. Objectives This living systematic review aims to provide a timely, rigorous, and continuously updated synthesis of the evidence available on the role of CAR-T therapy for the treatment of patients with hematologic malignancies. Design A systematic review with meta-analysis of randomized controlled trials (RCTs) and comparative non-randomized studies of interventions (NRSI), evaluating the effect of CAR-T therapy versus other active treatments, hematopoietic stem cell transplantation, standard of care (SoC) or any other intervention, was performed in patients with hematologic malignancies. The primary outcome is overall survival (OS). Certainty of the evidence was determined using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Data sources and Methods Searches were performed in the Epistemonikos database, which collates information from multiple sources to identify systematic reviews and their included primary studies, including Cochrane Database of Systematic Reviews, MEDLINE, EMBASE, CINAHL, PsycINFO, LILACS, DARE, HTA Database, Campbell database, JBI Database of Systematic Reviews and Implementation Reports, EPPI-Centre Evidence Library. A manual search was also carried out. We included the evidence published up to 1 July 2022. Results We included the evidence published up to 1 July 2022. We considered 139 RCTs and 1725 NRSI as potentially eligible. Two RCTs (N = 681) comparing CAR-T therapy with SoC in patients with recurrent/relapsed (R/R) B-cell lymphoma were included. RCTs did not show statistical differences in OS, serious adverse events, or total adverse events with grade ⩾ 3. Higher complete response with substantial heterogeneity [risk ratio = 1.59; 95% confidence interval (CI) = (1.30-1.93); I 2 = 89%; 2 studies; 681 participants; very low certainty evidence] and higher progression-free survival [hazard ratio for progression or death = 0.49; 95% CI = (0.37-0.65); 1 study; 359 participants; moderate certainty evidence] were reported with CAR-T therapies. Nine NRSI (N = 540) in patients with T or B-cell acute lymphoblastic leukemia or R/R B-cell lymphoma were also included, providing secondary data. In general, the GRADE certainty of the evidence for main outcomes was mostly low or very low. Conclusion So far, assuming important limitations in the level of certainty due to scarce and heterogenous comparative studies, CAR-T therapies have shown some benefit in terms of progression-free survival, but no overall survival, in patients with R/R B-cell lymphoma. Despite one-arm trials have already facilitated approval of CAR-T cell treatments, additional evidence from large comparative studies is still needed to better characterize the benefit-harm ratio of the use of CAR-T in a variety of patient populations with hematological malignancies. Registration https://doi.org/10.12688/openreseurope.14390.1. PROSPERO/OSF Preregistration 10.17605/OSF.IO/V6HDX.
Collapse
Affiliation(s)
- Luis Carlos Saiz
- Unit of Innovation and Organization, Navarre
Health Service, Tudela 20, 31003 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA),
Pamplona, Spain
| | - Leire Leache
- Unit of Innovation and Organization, Navarre
Health Service, Pamplona, Spain; Navarra Institute for Health Research
(IdiSNA), Pamplona, Spain
| | - Marta Gutiérrez-Valencia
- Unit of Innovation and Organization, Navarre
Health Service, Pamplona, Spain; Navarra Institute for Health Research
(IdiSNA), Pamplona, Spain
| | - Juan Erviti
- Unit of Innovation and Organization, Navarre
Health Service, Pamplona, Spain; Navarra Institute for Health Research
(IdiSNA), Pamplona, Spain
| | | |
Collapse
|