1
|
Danylesko I, Shem-Tov N, Yerushalmi R, Jacoby E, Toren A, Shouval R, Itzhaki O, Avigdor A, Shimoni A, Nagler A. Point of care CD19 chimeric antigen receptor (CAR) T-cells for relapsed/refractory acute myeloid leukemia (AML) with aberrant CD19 antigen expression. Curr Res Transl Med 2024; 72:103471. [PMID: 39305562 DOI: 10.1016/j.retram.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 12/07/2024]
Abstract
Relapsed/refractory (r/r) acute myeloid leukemia (AML) is associated with poor prognosis. CD19 is a B-cell marker, is aberrantly expressed in AML, mostly with t(8; 21)(q22; q22.1). Here we report the results of a phase 2 study giving point of care produced CD19 CAR T- cells for r/r AML with aberrant expression of CD19 (NCT04257175). Lymphodepletion included fludarabine and cyclophosphamide The response was evaluated by bone marrow (BM) aspiration on day 28. Six patients (5 adults and 1 child) were included. Median number of previous chemotherapy lines was 4 (range, 3-8) and four patients received CAR T-cells 8-18 months post allogeneic hematopoietic stem cell transplantation (allo-HSCT). Cytokine release syndrome (CRS) of any grade occurred in all patients, and 1 patient had grade 3 CRS. Immune effector cell-associated neurotoxicity syndrome (ICANS) occurred in 2 patients at low grades. Tocilizumab was administered to 2 patients and corticosteroids to 3 patients. Four patients achieved a complete remission (CR), while 2/6 progressed (PD). Three patients (2 with CR and 1 with PD) underwent allo-HSCT (it was the second transplant in 2) 2-5 months post CAR T-cells infusion. The median duration of response in patients achieving CR was 8.5 (range; 3-14) months. However, all patients eventually died within 5 (1-18) months. In conclusion, CD19 CAR T- cell treatment for AML is feasible and safe. However, the response is short and should be followed by allo-HSCT. Hopefully, future long term results will be improved by combining the CAR T- cell therapy with the emerging novel effective anti-leukemic compounds.
Collapse
Affiliation(s)
- Ivetta Danylesko
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Noga Shem-Tov
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Yerushalmi
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Jacoby
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Toren
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Roni Shouval
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Orit Itzhaki
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Abraham Avigdor
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Saito S, Nakazawa Y. CAR-T cell therapy in AML: recent progress and future perspectives. Int J Hematol 2024; 120:455-466. [PMID: 38963636 DOI: 10.1007/s12185-024-03809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Despite several small-molecule drugs that have revolutionized the current treatment strategy for acute myeloid leukemia (AML), hematopoietic stem cell transplantation remains the only curative treatment in most cases to date. Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising next-generation cancer therapies for hematological malignancies and is clinically available for treatment of AML. However, developing AML-targeted CAR-T therapy is challenging because of the heterogeneity of target antigen expression across leukemic cells and patients, the difficulty in excluding on-/off-target tumor effects, and the immunosuppressive tumor microenvironment. To date, various targets, including CD33, NKG2D, CD123, CLL-1, and CD7, have been actively studied for CAR-T cells. Although no CAR-T cell products are close to practical use, several clinical trials have shown promising results, particularly for CAR-T cells targeting CLL-1 or CD123. Meanwhile, research exploring the ideal target for AML-targeted CAR-T therapy continues. Furthermore, as collecting autologous lymphocytes from patients with AML is difficult, development of off-the-shelf CAR-T products is being actively pursued. This review discusses the challenges in AML-targeted CAR-T cell therapy development from the perspectives of target antigen characteristics and AML-specific on-target/off-tumor toxicity. Moreover, it discusses the clinical development and prospects of AML-targeting CAR-T cells.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan.
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan
| |
Collapse
|
3
|
Graff Z, Wachter F, Eapen M, Lehmann L, Cooper T. Navigating Treatment Options and Communication in Relapsed Pediatric AML. Am Soc Clin Oncol Educ Book 2024; 44:e438690. [PMID: 38862135 DOI: 10.1200/edbk_438690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite improved outcomes in newly diagnosed pediatric AML, relapsed disease remains a therapeutic challenge. Factors contributing to slow progress in improving outcomes include inherent challenges in pediatric clinical trial accrual and the scarcity of novel targeted/immunotherapy agents available for pediatric development. This paradigm is changing, however, as international collaboration grows in parallel with the development of promising targeted agents. In this review, we discuss the therapeutic landscape of relapsed pediatric AML, including conventional chemotherapy, targeted therapies, and the challenges of drug approvals in this patient population. We highlight current efforts to improve communication among academia, industry, and regulatory authorities and discuss the importance of international collaboration to improve access to new therapies. Among the therapeutic options, we highlight the approach to second hematopoietic stem cell transplant (HSCT) and discuss which patients are most likely to benefit from this potentially curative intervention. Importantly, we acknowledge the challenges in providing these high-risk interventions to our patients and their families and the importance of shared communication and decision making when considering early-phase clinical trials and second HSCT.
Collapse
Affiliation(s)
- Zachary Graff
- Department of Pediatrics, Division of Hematology, Oncology, and BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mary Eapen
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Leslie Lehmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Todd Cooper
- Department of Pediatrics, Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
4
|
Murdock HM, Ho VT, Garcia JS. Innovations in conditioning and post-transplant maintenance in AML: genomically informed revelations on the graft-versus-leukemia effect. Front Immunol 2024; 15:1359113. [PMID: 38571944 PMCID: PMC10987864 DOI: 10.3389/fimmu.2024.1359113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.
Collapse
Affiliation(s)
- H. Moses Murdock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vincent T. Ho
- Bone Marrow Transplant Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
5
|
Wang L, Mei H. Chimeric antigen receptor T-cell therapy, where are we now and where are we heading for. Eur J Haematol 2024; 112:4-5. [PMID: 38105392 DOI: 10.1111/ejh.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Heng Mei
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|