1
|
Caudle RM, Neubert JK. Effects of Oxaliplatin on Facial Sensitivity to Cool Temperatures and TRPM8 Expressing Trigeminal Ganglion Neurons in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:868547. [PMID: 35634452 PMCID: PMC9130462 DOI: 10.3389/fpain.2022.868547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The chemotherapeutic agent oxaliplatin is commonly used to treat colorectal cancer. Although effective as a chemotherapeutic, it frequently produces painful peripheral neuropathies. These neuropathies can be divided into an acute sensitivity to cool temperatures in the mouth and face, and chronic neuropathic pain in the limbs and possible numbness. The chronic neuropathy also includes sensitivity to cool temperatures. Neurons that detect cool temperatures are reported to utilize Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Therefore, we investigated the effects of oxaliplatin on facial nociception to cool temperatures (18°C) in mice and on TRPM8 expressing trigeminal ganglion (TRG) neurons. Paclitaxel, a chemotherapeutic that is used to treat breast cancer, was included for comparison because it produces neuropathies, but acute cool temperature sensitivity in the oral cavity or face is not typically reported. Behavioral testing of facial sensitivity to 18°C indicated no hypersensitivity either acutely or chronically following either chemotherapeutic agent. However, whole cell voltage clamp experiments in TRPM8 expressing TRG neurons indicated that both oxaliplatin and paclitaxel increased Hyperpolarization-Activated Cyclic Nucleotide-Gated channel (HCN), voltage gated sodium channel (Nav), and menthol evoked TRPM8 currents. Voltage gated potassium channel (Kv) currents were not altered. Histological examination of TRPM8 fibers in the skin of the whisker pads demonstrated that the TRPM8 expressing axons and possible Merkel cell-neurite complexes were damaged by oxaliplatin. These findings indicate that oxaliplatin induces a rapid degeneration of TRG neuron axons that express TRPM8, which prevents evoked activation of the sensitized neurons and likely leads to reduced sensitivity to touch and cool temperatures. The changes in HCN, Nav, and TRPM8 currents suggest that spontaneous firing of action potentials may be increased in the deafferented neurons within the ganglion, possibly producing spontaneously induced cooling or nociceptive sensations.
Collapse
Affiliation(s)
- Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Tan C, Yan F, Yao LP, Xing JL, Qin WJ, Zhang K, Wu GJ, Yuan JL, Liu F. Hyperpolarization-activated cation currents in medium-size dorsal root ganglion cells are involved in overactive bladder syndrome in rats. BMC Urol 2020; 20:140. [PMID: 32878607 PMCID: PMC7466781 DOI: 10.1186/s12894-020-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the functions of the hyperpolarization-activated cation currents in medium-size dorsal root ganglion cells in a rat model of overactive bladder syndrome. METHODS Rats with OAB were screened using a urodynamic testing device. The whole-cell patch clamp technique was used to investigate changes in excitability and hyperpolarization-activated cation current (Ih) of medium-size cells in the L6 dorsal root ganglia (DRG) of the OAB rats. Intrathecal injection of the specific Ih inhibitor ZD7288 was used to investigate changes of voiding function and Ih of medium-size cells in the L6 DRG. RESULTS The urinary bladder weight of the OAB rats was significantly increased (p < 0.01); However, 7 days after intrathecally administration of ZD7288 (2 μM), the weight of rat bladder was significantly reduced (p < 0.01). The excitability of the medium-size cells in the L6 DRG of the OAB rats was significantly increased, and the number of action potentials elicited by a 500 pA stimulus was also markedly increased. Furthermore, ZD7288 significantly reduced the excitability of the medium-size DRG cells. The medium-size cells in the DRG of the OAB rats had a significantly increased Ih current density, which was blocked by ZD7288. CONCLUSIONS The Ih current density significantly increased in medium-size cells of the L6 DRG in the OAB model. A decrease of the Ih current was able to significantly improve the voiding function of the OAB rats, in addition to lowering their urinary bladder weight. Our finding suggested that the observed increase of Ih current in the medium-size DRG neurons might play an important role in the pathological processes of OAB.
Collapse
Affiliation(s)
- Chao Tan
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Li-Ping Yao
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun-Ling Xing
- Institute of neuroscience, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei-Jun Qin
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Kun Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guo-Jun Wu
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jian-Lin Yuan
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Fei Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Djouhri L, Smith T, Ahmeda A, Alotaibi M, Weng X. Hyperpolarization-activated cyclic nucleotide-gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain 2018; 159:1392-1402. [PMID: 29578948 DOI: 10.1097/j.pain.0000000000001224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral neuropathic pain associated with partial nerve injury is believed to be driven partly by aberrant spontaneous activity (SA) in both injured and uninjured dorsal root ganglion (DRG) neurons. The underlying ionic mechanisms are not fully understood, but hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which underlie the excitatory Ih current have been implicated in SA generation in axotomized A-fiber neurons after L5-spinal nerve ligation/axotomy (SNL/SNA). Here, using a modified model of SNA (mSNA) which involves, in addition to L5-SNA, loose ligation of the L4-spinal nerve with neuroinflammation-inducing chromic gut, we examined whether HCN channels also contribute to SA in the adjacent L4-neurons. Intracellular recordings from L4-DRG neurons in control rats, and L4-DRG neurons in mSNA rats were made using in vivo voltage- and current-clamp techniques. Compared with control, L4 C-nociceptors and Aβ-low-threshold mechanoreceptors (LTMs) exhibited SA 7 days after mSNA. This was accompanied, in C-nociceptors, by a significant increase in Ih amplitude, the percentage of Ih-expressing neurons, and Ih activation rate. Hyperpolarization-activated cyclic nucleotide-gated channel blockade with ZD7288 (10 mg/kg, intravenously) suppressed SA in C-nociceptors, but not Aβ-LTMs, and caused in C-nociceptors, membrane hyperpolarization and a decrease in Ih activation rate. Furthermore, intraplantar injection of ZD7288 (100 μM) was found to be as effective as gabapentin (positive control) in attenuating cold hypersensitivity in mSNA rats. These findings suggest that HCN channels contribute to nerve injury-induced SA in L4 C-nociceptors, but not Aβ-LTMs, and that ZD7288 exerts its analgesic effects by altering Ih activation properties and/or causing membrane hyperpolarization in L4 C-nociceptors.
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Clinical and Molecular Pharmacology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Trevor Smith
- Wolfson CARD, Neurorestoration Group, King's College London, London, United Kingdom
| | - Ahmad Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alotaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xiechuan Weng
- State Key Laboratory of Proteomics, Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Peng SC, Wu J, Zhang DY, Jiang CY, Xie CN, Liu T. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons. Neuroscience 2017; 358:146-157. [PMID: 28673721 DOI: 10.1016/j.neuroscience.2017.06.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons.
Collapse
Affiliation(s)
- S-C Peng
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - J Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - D-Y Zhang
- Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - C-Y Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen 518052, China
| | - C-N Xie
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - T Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen 518052, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
6
|
Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons. PLoS One 2017; 12:e0176753. [PMID: 28472061 PMCID: PMC5417611 DOI: 10.1371/journal.pone.0176753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/17/2017] [Indexed: 01/04/2023] Open
Abstract
The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons' voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity.
Collapse
|
7
|
Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning. Proc Natl Acad Sci U S A 2015; 112:16030-5. [PMID: 26668355 DOI: 10.1073/pnas.1501731113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.
Collapse
|
8
|
Apostolides PF, Trussell LO. Control of interneuron firing by subthreshold synaptic potentials in principal cells of the dorsal cochlear nucleus. Neuron 2014; 83:324-330. [PMID: 25002229 DOI: 10.1016/j.neuron.2014.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2014] [Indexed: 12/17/2022]
Abstract
Voltage-gated ion channels amplify, compartmentalize, and normalize synaptic signals received by neurons. We show that voltage-gated channels activated during subthreshold glutamatergic synaptic potentials in a principal cell generate an excitatory→inhibitory synaptic sequence that excites electrically coupled interneurons. In fusiform cells of the dorsal cochlear nucleus, excitatory synapses activate a TTX-sensitive Na(+) conductance and deactivate a resting Ih conductance, leading to a striking reshaping of the synaptic potential. Subthreshold voltage changes resulting from activation/deactivation of these channels subsequently propagate through gap junctions, causing slow excitation followed by inhibition in GABAergic stellate interneurons. Gap-junction-mediated transmission of voltage-gated signals accounts for the majority of glutamatergic signaling to interneurons, such that subthreshold synaptic events from a single principal cell are sufficient to drive spikes in coupled interneurons. Thus, the interaction between a principal cell's synaptic and voltage-gated channels may determine the spike activity of networks without firing a single action potential.
Collapse
Affiliation(s)
- Pierre F Apostolides
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute & Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laurence O Trussell
- Vollum Institute & Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|