1
|
Calancie OG, Parr AC, Brien DC, Coe BC, Booij L, Khalid-Khan S, Munoz DP. Impairment of Visual Fixation and Preparatory Saccade Control in Borderline Personality Disorder With and Without Comorbid Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1178-1187. [PMID: 39032694 DOI: 10.1016/j.bpsc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Borderline personality disorder (BPD) is associated with heightened impulsivity, evidenced by increased substance abuse, self-harm, and suicide attempts. Addressing impulsivity in individuals with BPD is a therapeutic objective, but its underlying neural basis in this clinical population remains unclear, partly due to its frequent comorbidity with attention-deficit/hyperactivity disorder (ADHD). METHODS We used a response inhibition paradigm-the interleaved pro-/antisaccade task-among adolescents diagnosed with BPD with and without comorbid ADHD (n = 25 and n = 24, respectively) during concomitant video-based eye tracking. We quantified various eye movement response parameters reflective of impulsive action during the task, including delay to fixation acquisition, fixation breaks, anticipatory saccades, and direction errors with express saccade (saccade reaction time: 90-140 ms) and regular saccade latencies (saccade reaction time > 140 ms). RESULTS Individuals with BPD exhibited deficient response preparation, as evidenced by reduced visual fixation on task cues and greater variability of saccade responses (i.e., saccade reaction time and peak velocity). The ADHD/BPD group shared these traits and made more anticipatory responses and direction errors with express saccade latencies and reduced error correction. CONCLUSIONS Saccadic deficits in BPD and ADHD/BPD stemmed not from an inability to execute antisaccades but rather from inadequate preparation for the upcoming task set. These distinctions may arise due to abnormal signaling in cortical areas like the frontal eye fields, posterior parietal cortex, and anterior cingulate cortex. Understanding these mechanisms could provide insights into targeted interventions focusing on task set preparation to manage response inhibition deficits in BPD and ADHD/BPD.
Collapse
Affiliation(s)
- Olivia G Calancie
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; School of Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Don C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, Québec, Canada; Research Centre and Eating Disorders Continuum, Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Sarosh Khalid-Khan
- School of Medicine, Queen's University, Kingston, Ontario, Canada; Division of Child and Youth Psychiatry, Department of Psychiatry, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Doug P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
3
|
Neuronal Encoding of Self and Others' Head Rotation in the Macaque Dorsal Prefrontal Cortex. Sci Rep 2017; 7:8571. [PMID: 28819117 PMCID: PMC5561028 DOI: 10.1038/s41598-017-08936-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
Following gaze is a crucial skill, in primates, for understanding where and at what others are looking, and often requires head rotation. The neural basis underlying head rotation are deemed to overlap with the parieto-frontal attention/gaze-shift network. Here, we show that a set of neurons in monkey’s Brodmann area 9/46dr (BA 9/46dr), which is involved in orienting processes and joint attention, becomes active during self head rotation and that the activity of these neurons cannot be accounted for by saccade-related activity (head-rotation neurons). Another set of BA 9/46dr neurons encodes head rotation performed by an observed agent facing the monkey (visually triggered neurons). Among these latter neurons, almost half exhibit the intriguing property of encoding both execution and observation of head rotation (mirror-like neurons). Finally, by means of neuronal tracing techniques, we showed that BA 9/46dr takes part into two distinct networks: a dorso/mesial network, playing a role in spatial head/gaze orientation, and a ventrolateral network, likely involved in processing social stimuli and mirroring others’ head. The overall results of this study provide a new, comprehensive picture of the role of BA 9/46dr in encoding self and others’ head rotation, likely playing a role in head-following behaviors.
Collapse
|
4
|
Transient Pupil Dilation after Subsaccadic Microstimulation of Primate Frontal Eye Fields. J Neurosci 2016; 36:3765-76. [PMID: 27030761 DOI: 10.1523/jneurosci.4264-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/25/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Pupillometry provides a simple and noninvasive index for a variety of cognitive processes, including perception, attention, task consolidation, learning, and memory. The neural substrates by which such cognitive processes influence pupil diameter remain somewhat unclear, although cortical inputs to the locus coeruleus mediating arousal are likely involved. Changes in pupil diameter also accompany covert orienting; hence the oculomotor system may provide an alternative substrate for cognitive influences on pupil diameter. Here, we show that low-level electrical microstimulation of the primate frontal eye fields (FEFs), a cortical component of the oculomotor system strongly connected to the intermediate layers of the superior colliculus (SCi), evoked robust pupil dilation even in the absence of evoked saccades. The magnitude of such dilation scaled with increases in stimulation parameters, depending strongly on the intensity and number of pulses. Although there are multiple pathways by which FEF stimulation could cause pupil dilation, the timing and profile of dilation closely resembled that evoked by SCi stimulation. Moreover, pupil dilation evoked from the FEFs increased when presumed oculomotor activity was higher at the time of stimulation. Our findings implicate the oculomotor system as a potential substrate for how cognitive processes can influence pupil diameter. We suggest that a pathway from the frontal cortex through the SCi operates in parallel with frontal inputs to arousal circuits to regulate task-dependent modulation of pupil diameter, perhaps indicative of an organization wherein one pathway assumes primacy for a given cognitive process. SIGNIFICANCE STATEMENT Pupillometry (the measurement of pupil diameter) provides a simple and noninvasive index for a variety of cognitive processes, offering a biomarker that has value in both health and disease. But how do cognitive processes influence pupil diameter? Here, we show that low-level stimulation of the primate frontal eye fields can induce robust pupil dilation without saccades. Pupil dilation scaled with the number and intensity of stimulation pulses and varied with endogenous oculomotor activity at the time of stimulation. The oculomotor system therefore provides a plausible pathway by which cognitive processes may influence pupil diameter, perhaps operating in conjunction with systems regulating arousal.
Collapse
|
5
|
Lanzilotto M, Perciavalle V, Lucchetti C. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B). Front Behav Neurosci 2015; 8:454. [PMID: 25688190 PMCID: PMC4311694 DOI: 10.3389/fnbeh.2014.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
The Supplementary Eye Field (SEF) and the Frontal Eye Field (FEF) have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B) of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance) and during the execution of a visual fixation task (VFT). In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey's head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze orienting movements.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Section of Physiology and Neuroscience, Department of Biomedical Sciences, Metabolic and Neuroscience, University of Modena and Reggio Emilia Modena, Italy ; CSSI, Interdepartmental Facilities Center, University of Modena and Reggio Emilia Modena, Italy ; Section of Physiology, Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Vincenzo Perciavalle
- Section of Physiology, Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Cristina Lucchetti
- Section of Physiology and Neuroscience, Department of Biomedical Sciences, Metabolic and Neuroscience, University of Modena and Reggio Emilia Modena, Italy ; CSSI, Interdepartmental Facilities Center, University of Modena and Reggio Emilia Modena, Italy
| |
Collapse
|
6
|
Transcranial magnetic stimulation of the prefrontal cortex in awake nonhuman primates evokes a polysynaptic neck muscle response that reflects oculomotor activity at the time of stimulation. J Neurosci 2015; 34:14803-15. [PMID: 25355232 DOI: 10.1523/jneurosci.2907-14.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as an important technique in cognitive neuroscience, permitting causal inferences about the contribution of a given brain area to behavior. Despite widespread use, exactly how TMS influences neural activity throughout an interconnected network, and how such influences ultimately change behavior, remain unclear. The oculomotor system of nonhuman primates (NHPs) offers a potential animal model to bridge this gap. Here, based on results suggesting that neck muscle activity provides a sensitive indicator of oculomotor activation, we show that single pulses of TMS over the frontal eye fields (FEFs) in awake NHPs evoked rapid (within ∼25 ms) and fairly consistent (∼50-75% of all trials) expression of a contralateral head-turning synergy. This neck muscle response resembled that evoked by subsaccadic electrical microstimulation of the FEF. Systematic variation in TMS location revealed that this response could also be evoked from the dorsolateral prefrontal cortex (dlPFC). Combining TMS with an oculomotor task revealed state dependency, with TMS evoking larger neck muscle responses when the stimulated area was actively engaged. Together, these results advance the suitability of the NHP oculomotor system as an animal model for TMS. The polysynaptic neck muscle response evoked by TMS of the prefrontal cortex is a quantifiable trial-by-trial reflection of oculomotor activation, comparable to the monosynaptic motor-evoked potential evoked by TMS of primary motor cortex. Our results also speak to a role for both the FEF and dlPFC in head orienting, presumably via subcortical connections with the superior colliculus.
Collapse
|
7
|
Noorani I. LATER models of neural decision behavior in choice tasks. Front Integr Neurosci 2014; 8:67. [PMID: 25202242 PMCID: PMC4141543 DOI: 10.3389/fnint.2014.00067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/02/2014] [Indexed: 11/29/2022] Open
Abstract
Reaction time has been increasingly used over the last few decades to provide information on neural decision processes: it is a direct reflection of decision time. Saccades provide an excellent paradigm for this because many of them can be made in a very short time and the underlying neural pathways are relatively well-known. LATER (linear approach to threshold with ergodic rate) is a model originally devised to explain reaction time distributions in simple decision tasks. Recently, however it is being extended to increasingly more advanced tasks, including those with decision errors and those requiring voluntary control such as the antisaccade task and those where sequential decisions are required. The strength of this modeling approach lies in its detailed, quantitative predictions of behavior, yet LATER models still retain their conceptual simplicity that made LATER initially successful in explaining reaction times in simple decision tasks.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton Southampton, UK
| |
Collapse
|
8
|
|