1
|
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci 2023; 13:792. [PMID: 37239264 PMCID: PMC10216206 DOI: 10.3390/brainsci13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the concept of individualized measures of electroencephalographic (EEG) activity has emerged. Gamma-band activity plays an important role in many sensory and cognitive processes. Thus, peak frequency in the gamma range has received considerable attention. However, peak or individual gamma frequency (IGF) is rarely used as a primary measure of interest; consequently, little is known about its nature and functional significance. With this review, we attempt to comprehensively overview available information on the functional properties of peak gamma frequency, addressing its relationship with certain processes and/or modulation by various factors. Here, we show that IGFs seem to be related to various endogenous and exogenous factors. Broad functional aspects that are related to IGF might point to the differences in underlying mechanisms. Therefore, research utilizing different types of stimulation for IGF estimation and covering several functional aspects in the same population is required. Moreover, IGFs span a wide range of frequencies (30-100 Hz). This could be partly due to the variability of methods used to extract the measures of IGF. In order to overcome this issue, further studies aiming at the optimization of IGF extraction would be greatly beneficial.
Collapse
Affiliation(s)
| | | | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Wang B, Han C, Wang T, Dai W, Li Y, Yang Y, Yang G, Zhong L, Zhang Y, Wu Y, Wang G, Yu H, Xing D. Superimposed gratings induce diverse response patterns of gamma oscillations in primary visual cortex. Sci Rep 2021; 11:4941. [PMID: 33654121 PMCID: PMC7925546 DOI: 10.1038/s41598-021-83923-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Stimulus-dependence of gamma oscillations (GAMMA, 30-90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites' preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.
Collapse
Affiliation(s)
- Bin Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Weifeng Dai
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yang Li
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yi Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Guanzhong Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Lvyan Zhong
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yange Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Gang Wang
- grid.410318.f0000 0004 0632 3409Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, 100085 China
| | - Hongbo Yu
- grid.8547.e0000 0001 0125 2443Vision Research Laboratory, Center for Brain Science Research and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433 China
| | - Dajun Xing
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
3
|
Orekhova EV, Rostovtseva EN, Manyukhina VO, Prokofiev AO, Obukhova TS, Nikolaeva AY, Schneiderman JF, Stroganova TA. Spatial suppression in visual motion perception is driven by inhibition: Evidence from MEG gamma oscillations. Neuroimage 2020; 213:116753. [PMID: 32194278 DOI: 10.1016/j.neuroimage.2020.116753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Spatial suppression (SS) is a visual perceptual phenomenon that is manifest in a reduction of directional sensitivity for drifting high-contrast gratings whose size exceeds the center of the visual field. Gratings moving at faster velocities induce stronger SS. The neural processes that give rise to such size- and velocity-dependent reductions in directional sensitivity are currently unknown, and the role of surround inhibition is unclear. In magnetoencephalogram (MEG), large high-contrast drifting gratings induce a strong gamma response (GR), which also attenuates with an increase in the gratings' velocity. It has been suggested that the slope of this GR attenuation is mediated by inhibitory interactions in the primary visual cortex. Herein, we investigate whether SS is related to this inhibitory-based MEG measure. We evaluated SS and GR in two independent samples of participants: school-age boys and adult women. The slope of GR attenuation predicted inter-individual differences in SS in both samples. Test-retest reliability of the neuro-behavioral correlation was assessed in the adults, and was high between two sessions separated by several days or weeks. Neither frequencies nor absolute amplitudes of the GRs correlated with SS, which highlights the functional relevance of velocity-related changes in GR magnitude caused by augmentation of incoming input. Our findings provide evidence that links the psychophysical phenomenon of SS to inhibitory-based neural responses in the human primary visual cortex. This supports the role of inhibitory interactions as an important underlying mechanism for spatial suppression.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden.
| | - Ekaterina N Rostovtseva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
| | - Andrey O Prokofiev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
4
|
Pu Y, Cornwell BR, Cheyne D, Johnson BW. High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task. Neuroimage 2018; 178:92-103. [DOI: 10.1016/j.neuroimage.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
|
5
|
Magazzini L, Muthukumaraswamy SD, Campbell AE, Hamandi K, Lingford-Hughes A, Myers JFM, Nutt DJ, Sumner P, Wilson SJ, Singh KD. Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation. Hum Brain Mapp 2018; 37:3882-3896. [PMID: 27273695 PMCID: PMC5082569 DOI: 10.1002/hbm.23283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
The frequency of visual gamma oscillations is determined by both the neuronal excitation-inhibition balance and the time constants of GABAergic processes. The gamma peak frequency has been linked to sensory processing, cognitive function, cortical structure, and may have a genetic contribution. To disentangle the intricate relationship among these factors, accurate and reliable estimates of peak frequency are required. Here, a bootstrapping approach that provides estimates of peak frequency reliability, thereby increasing the robustness of the inferences made on this parameter was developed. The method using both simulated data and real data from two previous pharmacological MEG studies of visual gamma with alcohol and tiagabine was validated. In particular, the study by Muthukumaraswamy et al. [] (Neuropsychopharmacology 38(6):1105-1112), in which GABAergic enhancement by tiagabine had previously demonstrated a null effect on visual gamma oscillations, contrasting with strong evidence from both animal models and very recent human studies was re-evaluated. After improved peak frequency estimation and additional exclusion of unreliably measured data, it was found that the GABA reuptake inhibitor tiagabine did produce, as predicted, a marked decrease in visual gamma oscillation frequency. This result demonstrates the potential impact of objective approaches to data quality control, and provides additional translational evidence for the mechanisms of GABAergic transmission generating gamma oscillations in humans. Hum Brain Mapp 37:3882-3896, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland, 1123, New Zealand
- School of Psychology, Faculty of Science, Auckland University, Auckland, 1123, New Zealand
| | - Anne E Campbell
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Khalid Hamandi
- The Epilepsy Unit, University Hospital of Wales, Cardiff, CF14 4XW, United Kingdom
| | - Anne Lingford-Hughes
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Jim F M Myers
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - David J Nutt
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Sue J Wilson
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|