1
|
Muller CO, Metais A, Boublay N, Breuil C, Deligault S, Di Rienzo F, Guillot A, Collet C, Krolak-Salmon P, Saimpont A. Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults. J Sports Sci 2024:1-12. [PMID: 38574326 DOI: 10.1080/02640414.2024.2328418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.
Collapse
Affiliation(s)
- Camille O Muller
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Sébastien Deligault
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Aymeric Guillot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Christian Collet
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Firouzi M, Baetens K, Saeys M, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. Differential effects of conventional and high-definition transcranial direct-current stimulation of the motor cortex on implicit motor sequence learning. Eur J Neurosci 2023; 58:4181-4194. [PMID: 37864365 DOI: 10.1111/ejn.16173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Manon Saeys
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Jette, Belgium
- Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
3
|
Schwell G, Kozol Z, Tarshansky D, Einat M, Frenkel-Toledo S. The effect of action observation combined with high-definition transcranial direct current stimulation on motor performance in healthy adults: A randomized controlled trial. Front Hum Neurosci 2023; 17:1126510. [PMID: 36936614 PMCID: PMC10014919 DOI: 10.3389/fnhum.2023.1126510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Action observation (AO) can improve motor performance in humans, probably via the human mirror neuron system. In addition, there is some evidence that transcranial direct current stimulation (tDCS) can improve motor performance. However, it is yet to be determined whether AO combined with tDCS has an enhanced effect on motor performance. We investigated the effect of AO combined with high-definition tDCS (HD-tDCS) targeting the inferior parietal lobe (IPL) and inferior frontal gyrus (IFG), the main aggregates of the human mirror neuron system, on motor performance in healthy adults and compared the immediate vs. 24-h retention test effects (anodal electrodes were placed over these regions of interest). Sixty participants were randomly divided into three groups that received one of the following single-session interventions: (1) observation of a video clip that presented reaching movement sequences toward five lighted units + active HD-tDCS stimulation (AO + active HD-tDCS group); (2) observation of a video clip that presented the same reaching movement sequences + sham HD-tDCS stimulation (AO + sham HD-tDCS group); and (3) observation of a video clip that presented neutral movie while receiving sham stimulation (NM + sham HD-tDCS group). Subjects' reaching performance was tested before and immediately after each intervention and following 24 h. Subjects performed reaching movements toward units that were activated in the same order as the observed sequence during pretest, posttest, and retest. Occasionally, the sequence order was changed by beginning the sequence unexpectedly with a different activated unit. Outcome measures included mean Reaching Time and difference between the Reaching Time of the unexpected and expected reaching movements (Delta). In the posttest and retest, Reaching Time and Delta improved in the AO + sham HD-tDCS group compared to the NM + HD-sham tDCS group. In addition, at posttest, Delta improved in the AO + active HD-tDCS group compared to the NM + sham HD-tDCS group. It appears that combining a montage of active HD-tDCS, which targets the IPL and IFG, with AO interferes with the positive effects of AO alone on the performance of reaching movement sequences.
Collapse
Affiliation(s)
- Gidon Schwell
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Zvi Kozol
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - David Tarshansky
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Moshe Einat
- Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- *Correspondence: Silvi Frenkel-Toledo,
| |
Collapse
|
4
|
Zhao H, Zhang T, Cheng T, Chen C, Zhai Y, Liang X, Cheng N, Long Y, Li Y, Wang Z, Lu C. Neurocomputational mechanisms of young children's observational learning of delayed gratification. Cereb Cortex 2022; 33:6063-6076. [PMID: 36562999 DOI: 10.1093/cercor/bhac484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to delay gratification is crucial for a successful and healthy life. An effective way for young children to learn this ability is to observe the action of adult models. However, the underlying neurocomputational mechanism remains unknown. Here, we tested the hypotheses that children employed either the simple imitation strategy or the goal-inference strategy when learning from adult models in a high-uncertainty context. Results of computational modeling indicated that children used the goal-inference strategy regardless of whether the adult model was their mother or a stranger. At the neural level, results showed that successful learning of delayed gratification was associated with enhanced interpersonal neural synchronization (INS) between children and the adult models in the dorsal lateral prefrontal cortex but was not associated with children's own single-brain activity. Moreover, the discounting of future reward's value obtained from computational modeling of the goal-inference strategy was positively correlated with the strength of INS. These findings from our exploratory study suggest that, even for 3-year-olds, the goal-inference strategy is used to learn delayed gratification from adult models, and the learning strategy is associated with neural interaction between the brains of children and adult models.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tengfei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tong Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Xi Liang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Nanhua Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ying Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Zhengyan Wang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| |
Collapse
|
5
|
Saporta N, Peled-Avron L, Scheele D, Lieberz J, Hurlemann R, Shamay-Tsoory SG. Touched by loneliness-how loneliness impacts the response to observed human touch: a tDCS study. Soc Cogn Affect Neurosci 2022; 17:142-150. [PMID: 34907421 PMCID: PMC8824677 DOI: 10.1093/scan/nsab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Lonely people often crave connectedness. However, they may also experience their environment as threatening, entering a self-preserving state that perpetuates loneliness. Research shows conflicting evidence about their response to positive social cues, and little is known about their experience of observed human touch. The right inferior frontal gyrus (rIFG) is part of an observation-execution network implicated in observed touch perception. Correlative studies also point to rIFG's involvement in loneliness. We examined the causal effect of rIFG anodal transcranial direct current stimulation on high- and low-loneliness individuals observing human touch. In a cross-over design study, 40 participants watched pictures of humans or objects touching or not touching during anodal and sham stimulations. Participants indicated whether pictures contained humans or objects, and their reaction time was measured. Results show that the reaction time of low-loneliness individuals to observed human touch was significantly slower during anodal stimulation compared to high-loneliness individuals, possibly due to them being more emotionally distracted by it. Lonely individuals also reported less liking of touch. Our findings support the notion that lonely individuals are not drawn to positive social cues. This may help explain the perpetuation of loneliness, despite social opportunities that could be available to lonely people.
Collapse
Affiliation(s)
- Nira Saporta
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel
| | - Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany
| | - Jana Lieberz
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg 26129, Germany
| | | |
Collapse
|
6
|
Choi GY, Han CH, Lee HT, Paik NJ, Kim WS, Hwang HJ. An artificial neural-network approach to identify motor hotspot for upper-limb based on electroencephalography: a proof-of-concept study. J Neuroeng Rehabil 2021; 18:176. [PMID: 34930380 PMCID: PMC8686235 DOI: 10.1186/s12984-021-00972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Background To apply transcranial electrical stimulation (tES) to the motor cortex, motor hotspots are generally identified using motor evoked potentials by transcranial magnetic stimulation (TMS). The objective of this study is to validate the feasibility of a novel electroencephalography (EEG)-based motor-hotspot-identification approach using a machine learning technique as a potential alternative to TMS. Methods EEG data were measured using 63 channels from thirty subjects as they performed a simple finger tapping task. Power spectral densities of the EEG data were extracted from six frequency bands (delta, theta, alpha, beta, gamma, and full) and were independently used to train and test an artificial neural network for motor hotspot identification. The 3D coordinate information of individual motor hotspots identified by TMS were quantitatively compared with those estimated by our EEG-based motor-hotspot-identification approach to assess its feasibility. Results The minimum mean error distance between the motor hotspot locations identified by TMS and our proposed motor-hotspot-identification approach was 0.22 ± 0.03 cm, demonstrating the proof-of-concept of our proposed EEG-based approach. A mean error distance of 1.32 ± 0.15 cm was measured when using only nine channels attached to the middle of the motor cortex, showing the possibility of practically using the proposed motor-hotspot-identification approach based on a relatively small number of EEG channels. Conclusion We demonstrated the feasibility of our novel EEG-based motor-hotspot-identification method. It is expected that our approach can be used as an alternative to TMS for motor hotspot identification. In particular, its usability would significantly increase when using a recently developed portable tES device integrated with an EEG device.
Collapse
Affiliation(s)
- Ga-Young Choi
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Chang-Hee Han
- Department of Software, College of Software Convergence, Dongseo University, Busan, 47011, South Korea
| | - Hyung-Tak Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, South Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, 13620, Republic of Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, 13620, Republic of Korea.
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea. .,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, South Korea.
| |
Collapse
|
7
|
Marotta A, Re A, Zampini M, Fiorio M. Bodily self-perception during voluntary actions: The causal contribution of premotor cortex and cerebellum. Cortex 2021; 142:1-14. [PMID: 34166922 DOI: 10.1016/j.cortex.2021.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Voluntary actions are accompanied by the experience of controlling one's own movements (sense of agency) and the feeling that the moving body part belongs to one's self (sense of body ownership). So far, agency and body ownership have been investigated separately, leaving the neural underpinnings of the relation between the two largely unexplored. The aim of this study was to explore the causal role of two multisensory brain regions, that is the premotor cortex (PMc) and the cerebellum, in agency and body ownership concurrently on the same behavioral task, i.e., the moving Rubber Hand Illusion (mRHI). Participants watched a rubber hand while moving their hidden hand. The type of movement (active or passive) and posture of the rubber hand (congruent or incongruent) differed in three conditions (active congruent, passive congruent, active incongruent), so that agency and ownership could be elicited either separately or concurrently. Agency and ownership were measured by subjective report and proprioceptive drift. Sham and anodal transcranial direct current stimulation (tDCS) were delivered to the PMc (Experiment 1) or the cerebellum (Experiment 2) prior to the mRHI task. Independent of the site or type of tDCS, subjective reports revealed that both agency and ownership were evoked in the active congruent condition, ownership but not agency in the passive congruent condition, and agency but not ownership in the active incongruent condition. The proprioceptive drift was evoked in the active congruent and the passive congruent condition. Anodal tDCS over the PMc reduced the feeling of agency in the active congruent condition, while it enhanced proprioceptive drift when applied over the cerebellum. These findings suggest a specific causal contribution of the PMc and the cerebellum to bodily self-perception during voluntary movement, with the PMc mainly involved in awareness of action and the cerebellum in proprioceptive adaptation of body position in space.
Collapse
Affiliation(s)
- Angela Marotta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Re
- Department of Cognitive Science, Psychology, Educational and Cultural Studies (COSPECS), University of Messina, Messina, Italy
| | - Massimiliano Zampini
- Centro Interdipartimentale Mente/Cervello, CIMeC, University of Trento, Rovereto, TN, Italy; Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Mirta Fiorio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
8
|
Kostorz K, Flanagin VL, Glasauer S. Synchronization between instructor and observer when learning a complex bimanual skill. Neuroimage 2020; 216:116659. [DOI: 10.1016/j.neuroimage.2020.116659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
|
9
|
Berntsen MB, Cooper NR, Hughes G, Romei V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behav Brain Res 2019; 361:39-49. [PMID: 30578806 DOI: 10.1016/j.bbr.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
Cortical activity in frontal, parietal, and motor regions during sequence observation correlates with performance on sequence reproduction. Increased cortical activity observed during observation has therefore been suggested to represent increased learning. Causal relationships have been demonstrated between M1 and motor sequence reproduction and between parietal cortex and bimanual learning. However, similar effects have not been reported for frontal regions despite a number of reports implicating its involvement in encoding of motor sequences. Investigating causal relations between cortical activity and reproduction of motor sequences in parietal, frontal and primary motor regions can disentangle whether specific regions during simple observation can be selectively ascribed to encoding or reproduction or both. We designed a sensorimotor paradigm that included a strong motor sequence component, and tested the impact of individually adjusted transcranial alternating current stimulation (IAF-tACS) to prefrontal, parietal, and primary motor regions on electroencephalographic motor rhythms (alpha and beta bandwidths) during motor sequence observation and the ability to reproduce the observed sequences. Independently of the stimulated region, IAF-tACS led to a reduction in suppression in the lower beta-range relative to sham. Prefrontal IAF-tACS however, led to significant improvement in motor sequence reproduction, pinpointing the crucial role of prefrontal regions in motor sequence reproduction.
Collapse
Affiliation(s)
- Monica B Berntsen
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Nicholas R Cooper
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Gethin Hughes
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom
| | - Vincenzo Romei
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom; Dipartimento di Psicologia and Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, Universitá di Bologna, 47521 Cesena, Italy
| |
Collapse
|
10
|
Shamay-Tsoory SG, Saporta N, Marton-Alper IZ, Gvirts HZ. Herding Brains: A Core Neural Mechanism for Social Alignment. Trends Cogn Sci 2019; 23:174-186. [DOI: 10.1016/j.tics.2019.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
|
11
|
Ferrucci R, Mrakic-Sposta S, Gardini S, Ruggiero F, Vergari M, Mameli F, Arighi A, Spallazzi M, Barocco F, Michelini G, Pietroboni AM, Ghezzi L, Fumagalli GG, D'Urso G, Caffarra P, Scarpini E, Priori A, Marceglia S. Behavioral and Neurophysiological Effects of Transcranial Direct Current Stimulation (tDCS) in Fronto-Temporal Dementia. Front Behav Neurosci 2018; 12:235. [PMID: 30420799 PMCID: PMC6215856 DOI: 10.3389/fnbeh.2018.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
Fronto-temporal dementia (FTD) is the clinical-diagnostic term that is now preferred to describe patients with a range of progressive dementia syndromes associated with focal atrophy of the frontal and anterior temporal cerebral regions. Currently available FTD medications have been used to control behavioral symptoms, even though they are ineffective in some patients, expensive and may induce adverse effects. Alternative therapeutic approaches are worth pursuing, such as non-invasive brain stimulation with transcranial direct current (tDCS). tDCS has been demonstrated to influence neuronal excitability and reported to enhance cognitive performance in dementia. The aim of this study was to investigate whether applying Anodal tDCS (2 mA intensity, 20 min) over the fronto-temporal cortex bilaterally in five consecutive daily sessions would improve cognitive performance and behavior symptoms in FTD patients, also considering the neuromodulatory effect of stimulation on cortical electrical activity measured through EEG. We recruited 13 patients with FTD and we tested the effect of Anodal and Sham (i.e., placebo) tDCS in two separate experimental sessions. In each session, at baseline (T0), after 5 consecutive days (T1), after 1 week (T2), and after 4 weeks (T3) from the end of the treatment, cognitive and behavioral functions were tested. EEG (21 electrodes, 10-20 international system) was recorded for 5 min with eyes closed at the same time points in nine patients. The present findings showed that Anodal tDCS applied bilaterally over the fronto-temporal cortex significantly improves (1) neuropsychiatric symptoms (as measured by the neuropsychiatric inventory, NPI) in FTD patients immediately after tDCS treatment, and (2) simple visual reaction times (sVRTs) up to 1 month after tDCS treatment. These cognitive improvements significantly correlate with the time course of the slow EEG oscillations (delta and theta bands) measured at the same time points. Even though further studies on larger samples are needed, these findings support the effectiveness of Anodal tDCS over the fronto-temporal regions in FTD on attentional processes that might be correlated to a normalized EEG low-frequency pattern.
Collapse
Affiliation(s)
- Roberta Ferrucci
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- “Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
- III Neurological Clinic, San Paolo Hospital, Milan, Italy
| | - Simona Mrakic-Sposta
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- National Council of Research, Institute of Bioimaging and Molecular Physiology, Segrate, Italy
| | - Simona Gardini
- Department of Neuroscience, University of Parma, Parma, Italy
| | - Fabiana Ruggiero
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vergari
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Mameli
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” center, University of Milan, Milan, Italy
| | - Marco Spallazzi
- Dementia Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Federica Barocco
- Dementia Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | | | - Anna Margherita Pietroboni
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” center, University of Milan, Milan, Italy
| | - Laura Ghezzi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” center, University of Milan, Milan, Italy
| | - Giorgio Giulio Fumagalli
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” center, University of Milan, Milan, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | - Paolo Caffarra
- Dementia Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
- Center for Cognitive Disorders and Dementia, AUSL of Parma, Parma, Italy
| | - Elio Scarpini
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” center, University of Milan, Milan, Italy
| | - Alberto Priori
- “Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
- III Neurological Clinic, San Paolo Hospital, Milan, Italy
| | - Sara Marceglia
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|
12
|
Huang YZ, Chen RS, Fong PY, Rothwell JC, Chuang WL, Weng YH, Lin WY, Lu CS. Inter-cortical modulation from premotor to motor plasticity. J Physiol 2018; 596:4207-4217. [PMID: 29888792 DOI: 10.1113/jp276276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Synaptic plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network, a concept that could be employed to intervene in diseases with abnormal plasticity. ABSTRACT Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min, respectively, after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity.
Collapse
Affiliation(s)
- Ying-Zu Huang
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Po-Yu Fong
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Wen-Li Chuang
- Department of Neurology, Cheng Ching Hospital, Taichung, 40764, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Wey-Yil Lin
- Department of Neurology, Landseed Hospital, Taoyuan, 32449, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| |
Collapse
|
13
|
Lin CHJ, Yang HC, Knowlton BJ, Wu AD, Iacoboni M, Ye YL, Huang SL, Chiang MC. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage 2018; 181:1-15. [PMID: 29966717 DOI: 10.1016/j.neuroimage.2018.06.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
Increasing contextual interference (CI) during practice benefits learning, making it a desirable difficulty. For example, interleaved practice (IP) of motor sequences is generally more difficult than repetitive practice (RP) during practice but leads to better learning. Here we investigated whether CI in practice modulated resting-state functional connectivity during consolidation. 26 healthy adults (11 men/15 women, age = 23.3 ± 1.3 years) practiced two sets of three sequences in an IP or RP condition over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, functional magnetic resonance imaging (fMRI) data were acquired during practice and also in a resting state immediately after practice. The resting-state fMRI data were processed using independent component analysis (ICA) followed by functional connectivity analysis, showing that IP on Day 1 led to greater resting connectivity than RP between the left premotor cortex and left dorsolateral prefrontal cortex (DLPFC), bilateral posterior cingulate cortices, and bilateral inferior parietal lobules. Moreover, greater resting connectivity after IP than RP on Day 1, between the left premotor cortex and the hippocampus, amygdala, putamen, and thalamus on the right, and the cerebellum, was associated with better learning following IP. Mediation analysis further showed that the association between enhanced resting premotor-hippocampal connectivity on Day 1 and better retention performance following IP was mediated by greater task-related functional activation during IP on Day 2. Our findings suggest that the benefit of CI to motor learning is likely through enhanced resting premotor connectivity during the early phase of consolidation.
Collapse
Affiliation(s)
- Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, 112, Taiwan; Yeong-An Orthopedic and Physical Therapy Clinic, Taipei, 112, Taiwan.
| | - Ho-Ching Yang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| | - Allan D Wu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA.
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Yu-Ling Ye
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Shin-Leh Huang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
14
|
Lopez-Alonso V, Liew SL, Fernández Del Olmo M, Cheeran B, Sandrini M, Abe M, Cohen LG. A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Front Neurosci 2018; 12:253. [PMID: 29740271 PMCID: PMC5924807 DOI: 10.3389/fnins.2018.00253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (M1) on motor learning (Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability (MEP amplitude and SICI). We compared anodal transcranial direct current stimulation (tDCS), paired associative stimulation (PAS25), and intermittent theta burst stimulation (iTBS), along with a sham tDCS control condition. Stimulation was applied prior to motor learning. Participants (n = 28) were randomized into one of the four groups and were trained on a skilled motor task. Motor learning was measured immediately after training (online), 1 day after training (consolidation), and 1 week after training (retention). We did not find consistent differential effects on motor learning or cortical excitability across groups. Within the boundaries of our small sample sizes, we then assessed effect sizes across the NIBS groups that could help power future studies. These results, which require replication with larger samples, are consistent with previous reports of small and variable effect sizes of these interventions on motor learning.
Collapse
Affiliation(s)
- Virginia Lopez-Alonso
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States.,Department of Physical Activity and Sport Sciences, "Center of Higher Education Alberta Giménez (CESAG)" Comillas Pontifical University, Palma, Spain.,Department of Physical Education, Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - Sook-Lei Liew
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States.,Departments of Occupational Therapy, Biokinesiology, and Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Miguel Fernández Del Olmo
- Department of Physical Education, Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - Binith Cheeran
- Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom.,The London Clinic, London, United Kingdom
| | - Marco Sandrini
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Mitsunari Abe
- Faculty of Medicine, Center for Neurological Disorders, Fukushima Medical University, Fukushima, Japan
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Anodal tDCS over Primary Motor Cortex Provides No Advantage to Learning Motor Sequences via Observation. Neural Plast 2018; 2018:1237962. [PMID: 29796014 PMCID: PMC5896271 DOI: 10.1155/2018/1237962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
When learning a new motor skill, we benefit from watching others. It has been suggested that observation of others' actions can build a motor representation in the observer, and as such, physical and observational learning might share a similar neural basis. If physical and observational learning share a similar neural basis, then motor cortex stimulation during observational practice should similarly enhance learning by observation as it does through physical practice. Here, we used transcranial direct-current stimulation (tDCS) to address whether anodal stimulation to M1 during observational training facilitates skill acquisition. Participants learned keypress sequences across four consecutive days of observational practice while receiving active or sham stimulation over M1. The results demonstrated that active stimulation provided no advantage to skill learning over sham stimulation. Further, Bayesian analyses revealed evidence in favour of the null hypothesis across our dependent measures. Our findings therefore provide no support for the hypothesis that excitatory M1 stimulation can enhance observational learning in a similar manner to physical learning. More generally, the results add to a growing literature that suggests that the effects of tDCS tend to be small, inconsistent, and hard to replicate. Future tDCS research should consider these factors when designing experimental procedures.
Collapse
|
16
|
Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:167-175. [DOI: 10.3758/s13415-018-0561-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Kikuchi M, Takahashi T, Hirosawa T, Oboshi Y, Yoshikawa E, Minabe Y, Ouchi Y. The Lateral Occipito-temporal Cortex Is Involved in the Mental Manipulation of Body Part Imagery. Front Hum Neurosci 2017; 11:181. [PMID: 28443011 PMCID: PMC5387072 DOI: 10.3389/fnhum.2017.00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The lateral occipito-temporal cortex (LOTC), including the extrastriate body area, is known to be involved in the perception of body parts. Although still controversial, recent studies have demonstrated the role of the LOTC in higher-level body-related cognition in humans. This study consisted of two experiments (E1 and E2). The first (E1) was an exploratory experiment to find the neural correlate of the mental manipulation of body part imagery, in which brain cerebral glucose metabolic rates and the performance of mental rotation of the hand were measured in 100 subjects who exhibited a range of symptoms of cognitive decline. In E1, we found that the level of glucose metabolism in the right LOTC was significantly correlated with performance in a task involving mental manipulation of the hand. Next, in E2, we performed a randomized, double-blind, controlled intervention study (clinical trial number: UMIN 000018310) in younger healthy adults to test whether right occipital (corresponding to the right LOTC) anodal stimulation using transcranial direct current stimulation (tDCS) could enhance the mental manipulation of the hand. In E2, we demonstrated a significant effect of tDCS on the accuracy rate in a task involving mental manipulation of the hand. Although further study is necessary to answer the question of whether these results are specific for the mental manipulation of body parts but not non-body parts, E1 demonstrated a possible role of the LOTC in carrying out the body mental manipulation task in patients with dementia, and E2 suggested the possible effect of tDCS on this task in healthy subjects.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa UniversityKanazawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa UniversityKanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa UniversityKanazawa, Japan
| | - Yumi Oboshi
- Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of MedicineHamamatsu, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics K.K.Hamamatsu, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa UniversityKanazawa, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa UniversityKanazawa, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of MedicineHamamatsu, Japan
| |
Collapse
|
18
|
Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial. Rehabil Res Pract 2017; 2017:6842549. [PMID: 28250992 PMCID: PMC5303863 DOI: 10.1155/2017/6842549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/24/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561).
Collapse
|
19
|
Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, Gerloff C, Hallett M, Hummel FC, Nitsche MA, Pascual-Leone A, Paulus WJ, Reis J, Robertson EM, Rothwell JC, Sandrini M, Schambra HM, Wassermann EM, Ziemann U, Cohen LG. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol 2017; 128:589-603. [PMID: 28231477 DOI: 10.1016/j.clinph.2017.01.004] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/05/2023]
Abstract
Motor skills are required for activities of daily living. Transcranial direct current stimulation (tDCS) applied in association with motor skill learning has been investigated as a tool for enhancing training effects in health and disease. Here, we review the published literature investigating whether tDCS can facilitate the acquisition, retention or adaptation of motor skills. Work in multiple laboratories is underway to develop a mechanistic understanding of tDCS effects on different forms of learning and to optimize stimulation protocols. Efforts are required to improve reproducibility and standardization. Overall, reproducibility remains to be fully tested, effect sizes with present techniques vary over a wide range, and the basis of observed inter-individual variability in tDCS effects is incompletely understood. It is recommended that future studies explicitly state in the Methods the exploratory (hypothesis-generating) or hypothesis-driven (confirmatory) nature of the experimental designs. General research practices could be improved with prospective pre-registration of hypothesis-based investigations, more emphasis on the detailed description of methods (including all pertinent details to enable future modeling of induced current and experimental replication), and use of post-publication open data repositories. A checklist is proposed for reporting tDCS investigations in a way that can improve efforts to assess reproducibility.
Collapse
Affiliation(s)
- Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins Medical Institution, Baltimore, MD, USA
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Christian Gerloff
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology University Medical Center Hamburg-Eppendorf Martinistr, Hamburg, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Friedhelm C Hummel
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology University Medical Center Hamburg-Eppendorf Martinistr, Hamburg, Germany
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Walter J Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Janine Reis
- Department of Neurology, Albert Ludwigs University, Freiburg, Germany
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - Marco Sandrini
- Department of Psychology, University of Roehampton, London, UK
| | - Heidi M Schambra
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Ammann C, Spampinato D, Márquez-Ruiz J. Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Front Psychol 2016; 7:1981. [PMID: 28066300 PMCID: PMC5179543 DOI: 10.3389/fpsyg.2016.01981] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years.
Collapse
Affiliation(s)
- Claudia Ammann
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution Baltimore, MD, USA
| | - Danny Spampinato
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution Baltimore, MD, USA
| | | |
Collapse
|
21
|
Farmer H, Apps M, Tsakiris M. Reputation in an economic game modulates premotor cortex activity during action observation. Eur J Neurosci 2016; 44:2191-201. [PMID: 27364606 DOI: 10.1111/ejn.13327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
Abstract
Our interactions with other people - and our processing of their actions - are shaped by their reputation. Research has identified an Action Observation Network (AON) which is engaged when observing other people's actions. Yet, little is known about how the processing of others' actions is influenced by another's reputation. Is the response of the AON modulated by the reputation of the actor? We developed a variant of the ultimatum game in which participants watched either the visible or occluded actions of two 'proposers'. These actions were tied to decisions of how to split a pot of money although the proposers' decisions on each trial were not known to participants when observing the actions. One proposer made fair offers on the majority of trials, establishing a positive reputation, whereas the other made predominantly, unfair offers resulting in a negative reputation. We found significant activations in two regions of the left dorsal premotor cortex (dPMC). The first of these showed a main effect of reputation with greater activation for the negative reputation proposer than the positive reputation proposer. Furthermore individual differences in trust ratings of the two proposers covaried with activation in the right primary motor cortex (M1). The second showed an interaction between visibility and reputation driven by a greater effect of reputation when participants were observing an occluded action. Our findings show that the processing of others' actions in the AON is modulated by an actor's reputation, and suggest a predictive role for the PMC during action observation.
Collapse
Affiliation(s)
- Harry Farmer
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Matthew Apps
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
22
|
Paneri B, Adair D, Thomas C, Khadka N, Patel V, Tyler WJ, Parra L, Bikson M. Tolerability of Repeated Application of Transcranial Electrical Stimulation with Limited Outputs to Healthy Subjects. Brain Stimul 2016; 9:740-754. [PMID: 27372844 DOI: 10.1016/j.brs.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The safety and tolerability of limited output transcranial electrical stimulation (tES) in clinical populations support a non-significant risk designation. The tolerability of long-term use in a healthy population had remained untested. OBJECTIVE We tested the tolerability and compliance of two tES waveforms, transcranial direct current stimulation (tDCS) and modulated high frequency transcranial pulsed current stimulation (MHF-tPCS) compared to sham-tDCS, applied to healthy subjects for three to five days (17-20 minutes per day) per week for up to six weeks in a communal setting. MHF-tPCS consisted of asymmetric high-frequency pulses (7-11 kHz) having a peak amplitude of 10-20 mA peak, adjusted by subject, resulting in an average current of 5-7 mA. METHOD A total of 100 treatment blind healthy subjects were randomly assigned to one of three treatment groups: tDCS (n = 33), MHF-tPCS (n = 30), or sham-tDCS (n = 37). In order to test the role of waveform, electrode type and montage were fixed across tES and sham-tDCS arms: high-capacity self-adhering electrodes on the right lateral forehead and back of the neck. We conducted 1905 sessions (636 sham-tDCS, 623 tDCS, and 646 MHF-tPCS sessions) on study volunteers over a period of six weeks. RESULTS Common adverse events were primarily restricted to influences upon the skin and included skin tingling, itching, and mild burning sensations. The incidence of these events in the active tES treatment arms (MHF-tPCS, tDCS) was equivalent or significantly lower than their incidence in the sham-tDCS treatment arm. Other adverse events had a rarity (<5% incidence) that could not be significantly distinguished across the treatment groups. Some subjects were withdrawn from the study due to atypical headache (sham-tDCS n = 2, tDCS n = 2, and MHF-tPCS n = 3), atypical discomfort (sham-tDCS n = 0, tDCS n = 1, and MHF-tPCS n = 1), or atypical skin irritation (sham-tDCS n = 2, tDCS n = 8, and MHF-tPCS n = 1). The rate of compliance, elected sessions completed, for the MHF-tPCS group was significantly greater than the sham-tDCS group's compliance (p = 0.007). There were no serious adverse events in any treatment condition. CONCLUSION We conclude that repeated application of limited output tES across extended periods, limited to the hardware, electrodes, and protocols tested here, is well tolerated in healthy subjects, as previously observed in clinical populations.
Collapse
Affiliation(s)
- Bhaskar Paneri
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Chris Thomas
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Vaishali Patel
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - William J Tyler
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Lucas Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA.
| |
Collapse
|
23
|
Saimpont A, Mercier C, Malouin F, Guillot A, Collet C, Doyon J, Jackson PL. Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task. Eur J Neurosci 2015; 43:113-9. [PMID: 26540137 DOI: 10.1111/ejn.13122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 11/29/2022]
Abstract
Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double-blind, sham-controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty-six right-handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight-item complex finger sequence for 13 min. Before (Pre-test), immediately after (Post-test 1), and at 90 min after (Post-test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre-test and Post-test 1 and remained stable at Post-test 2 in the three groups (P < 0.001). Furthermore, the percentage increase in performance between Pre-test and Post-test 1 and Post-test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (P < 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone.
Collapse
Affiliation(s)
- Arnaud Saimpont
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Université Laval, Québec, Canada
| | - Catherine Mercier
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Université Laval, Québec, Canada.,Département de Réadaptation, Université Laval, Québec, Canada
| | - Francine Malouin
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Université Laval, Québec, Canada.,Département de Réadaptation, Université Laval, Québec, Canada
| | - Aymeric Guillot
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| | - Christian Collet
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Julien Doyon
- Functional Neuroimaging Unit, CRUIGM, University of Montreal, Montreal, Canada
| | - Philip L Jackson
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Université Laval, Québec, Canada.,Ecole de Psychologie, Université Laval, Québec, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
| |
Collapse
|
24
|
Halje P, Seeck M, Blanke O, Ionta S. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings. Neuropsychologia 2015; 79:206-14. [PMID: 26282276 DOI: 10.1016/j.neuropsychologia.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions.
Collapse
Affiliation(s)
- Pär Halje
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Silvio Ionta
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland.
| |
Collapse
|