1
|
Schaal NK, Kloos S, Pollok B, Herff SA. The influence of anodal transcranial direct current stimulation over the right auditory cortex on interference effects in memory for melodies. Brain Cogn 2021; 154:105798. [PMID: 34530286 DOI: 10.1016/j.bandc.2021.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The study investigates how transcranial direct current stimulation (tDCS) over the auditory cortex (AC) modulates memory for melodies under different noise conditions, whilst also considering cumulative disruptive interference effects. Forty-one participants completed a continuous recognition melody task, as well as a visual control task, which included four noise conditions for which noise was either present only during encoding (N-C), only during retrieval (C-N), during both (N-N) or not at all (C-C) and completed the tasks after receiving anodal or sham tDCS over the right AC. The results of the sham session replicate previous findings by revealing that memory for melodies is worse when noise in added to the encoding phase (N-C) whereas the N-N condition shows good performance, highlighting a context effect, and that cumulative disruptive interference is not present in memory for melodies except in the N-C condition. After anodal stimulation the memory pattern differs such as that memory performance is best in the C-C condition and furthermore the cumulative disruptive interference effect in the N-C condition is diminished. In sum, the study highlights the involvement of the right AC for memory for melodies and the results indicate an association of the AC for creating context effects.
Collapse
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Stefanie Kloos
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Steffen A Herff
- École Polytechnique fédérale de Lausanne, Switzerland; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| |
Collapse
|
2
|
Khan DM, Kamel N, Muzaimi M, Hill T. Effective Connectivity for Default Mode Network Analysis of Alcoholism. Brain Connect 2020; 11:12-29. [PMID: 32842756 DOI: 10.1089/brain.2019.0721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Introduction: With the recent technical advances in brain imaging modalities such as magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging (fMRI), researchers' interests have inclined over the years to study brain functions through the analysis of the variations in the statistical dependence among various brain regions. Through its wide use in studying brain connectivity, the low temporal resolution of the fMRI represented by the limited number of samples per second, in addition to its dependence on brain slow hemodynamic changes, makes it of limited capability in studying the fast underlying neural processes during information exchange between brain regions. Materials and Methods: In this article, the high temporal resolution of the electroencephalography (EEG) is utilized to estimate the effective connectivity within the default mode network (DMN). The EEG data are collected from 20 subjects with alcoholism and 25 healthy subjects (controls), and used to obtain the effective connectivity diagram of the DMN using the Partial Directed Coherence algorithm. Results: The resulting effective connectivity diagram within the DMN shows the unidirectional causal effect of each region on the other. The variations in the causal effects within the DMN between controls and alcoholics show clear correlation with the symptoms that are usually associated with alcoholism, such as cognitive and memory impairments, executive control, and attention deficiency. The correlation between the exchanged causal effects within the DMN and symptoms related to alcoholism is discussed and properly analyzed. Conclusion: The establishment of the causal differences between control and alcoholic subjects within the DMN regions provides valuable insight into the mechanism by which alcohol modulates our cognitive and executive functions and creates better possibility for effective treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Danish M Khan
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia.,Department of Electronic and Telecommunications Engineering, NED University of Engineering & Technology, University Road, Karachi, Pakistan
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Malaysia
| | - Timothy Hill
- Neurotherapy & Psychology, Brain Therapy Centre, Kent Town, Australia
| |
Collapse
|
3
|
Brunyé TT, Smith AM, Horner CB, Thomas AK. Verbal long-term memory is enhanced by retrieval practice but impaired by prefrontal direct current stimulation. Brain Cogn 2018; 128:80-88. [PMID: 30414699 DOI: 10.1016/j.bandc.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 10/27/2022]
Abstract
Retrieval practice involves repeatedly testing a student during the learning experience, reliably conferring learning advantages relative to repeated study. Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (dlPFC) has also been shown to confer learning advantages for verbal memory, though research is equivocal. The present study examined the effects of retrieval versus study practice with or without left dlPFC tDCS on verbal episodic memory. Participants (N = 150) experienced either retrieval practice or study practice, and active anodal, active cathodal, or sham tDCS while encoding word lists, and then returned two days later for a final recall test. Three primary patterns emerged: first, during encoding, tDCS did not influence recall rates in the retrieval practice group. Second, during final recall, participants in the retrieval practice groups recalled more than those in the study practice groups. Finally, during final recall, anodal tDCS decreased recall relative to sham and cathodal stimulation, suggesting that it interfered with developing highly detailed memories that could be relied upon for subsequent recollection. Data support existing research demonstrating the effectiveness of retrieval practice as a learning strategy, but also suggest that anodal dlPFC stimulation can induce long-term negative impacts on verbal episodic memory retrieval.
Collapse
Affiliation(s)
- Tad T Brunyé
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA; Tufts University, Department of Psychology, Medford, MA 02155, USA; U.S. Army Natick Soldier RDEC, Cognitive Sciences, Natick, MA 01760, USA.
| | - Amy M Smith
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA
| | - Carlene B Horner
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA
| | - Ayanna K Thomas
- Tufts University, Department of Psychology, Medford, MA 02155, USA
| |
Collapse
|
4
|
Hohmann A, Loui P, Li CH, Schlaug G. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network. Front Hum Neurosci 2018; 12:9. [PMID: 29441004 PMCID: PMC5797547 DOI: 10.3389/fnhum.2018.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG) and posterior inferior frontal gyri (pIFG)) with cathodal transcranial direct current stimulation (tDCS)—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.
Collapse
Affiliation(s)
- Anja Hohmann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Psyche Loui
- Department of Psychology, Wesleyan University, Middletown, CT, United States
| | - Charles H Li
- Music, Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gottfried Schlaug
- Music, Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Schaal NK, Kretschmer M, Keitel A, Krause V, Pfeifer J, Pollok B. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities. Front Neurosci 2017; 11:677. [PMID: 29270105 PMCID: PMC5723654 DOI: 10.3389/fnins.2017.00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample (N = 22) no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.
Collapse
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marina Kretschmer
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ariane Keitel
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vanessa Krause
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jasmin Pfeifer
- Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, Netherlands.,Institute for Language and Information, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bettina Pollok
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Sihvonen AJ, Särkämö T, Ripollés P, Leo V, Saunavaara J, Parkkola R, Rodríguez-Fornells A, Soinila S. Functional neural changes associated with acquired amusia across different stages of recovery after stroke. Sci Rep 2017; 7:11390. [PMID: 28900231 PMCID: PMC5595783 DOI: 10.1038/s41598-017-11841-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Faculty of Medicine, University of Turku, 20520, Turku, Finland. .,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.,Poeppel Lab, Department of Psychology, New York University, 10003, NY, USA
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, 20521, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University and Turku University Hospital, 20521, Turku, Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Cognition, Development and Education Psychology, University of Barcelona, 08035, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital and Department of Neurology, University of Turku, 20521, Turku, Finland
| |
Collapse
|
7
|
Manuel AL, Schnider A. Effect of prefrontal and parietal tDCS on learning and recognition of verbal and non-verbal material. Clin Neurophysiol 2016; 127:2592-8. [DOI: 10.1016/j.clinph.2016.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
|