1
|
Droby A, Thaler A, Mirelman A. Imaging Markers in Genetic Forms of Parkinson's Disease. Brain Sci 2023; 13:1212. [PMID: 37626568 PMCID: PMC10452191 DOI: 10.3390/brainsci13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rigidity, and resting tremor. While the majority of PD cases are sporadic, approximately 15-20% of cases have a genetic component. Advances in neuroimaging techniques have provided valuable insights into the pathophysiology of PD, including the different genetic forms of the disease. This literature review aims to summarize the current state of knowledge regarding neuroimaging findings in genetic PD, focusing on the most prevalent known genetic forms: mutations in the GBA1, LRRK2, and Parkin genes. In this review, we will highlight the contributions of various neuroimaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI), in elucidating the underlying pathophysiological mechanisms and potentially identifying candidate biomarkers for genetic forms of PD.
Collapse
Affiliation(s)
- Amgad Droby
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Avner Thaler
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| |
Collapse
|
2
|
Gu L, Dai S, Guo T, Si X, Lv D, Wang Z, Lu J, Fang Y, Guan X, Zhou C, Wu H, Xu X, Yan Y, Song Z, Zhang MM, Zhang B, Pu J. Noninvasive neuroimaging provides evidence for deterioration of the glymphatic system in Parkinson's disease relative to essential tremor. Parkinsonism Relat Disord 2023; 107:105254. [PMID: 36584484 DOI: 10.1016/j.parkreldis.2022.105254] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Growing evidence has demonstrated dysfunction of the glymphatic system in α-synucleinopathy and related diseases. In this study, we aimed to use diffusion tensor image analysis along the perivascular space (DTI-ALPS) and MRI-visible enlarged perivascular spaces (EPVS) to evaluate glymphatic system function quantitatively and qualitatively and its relationship to clinical scores of disease severity in Parkinson's disease (PD) and essential tremor (ET). METHODS Overall, 124 patients with PD, 74 with ET, and 106 healthy controls (HC) were enrolled. Two trained neurologists performed quantitative calculations of ALPS on DTI and visual ratings of EPVS on T2-weighted images in the centrum semiovale (CSO), basal ganglia (BG), midbrain, and cerebellum. RESULTS The ALPS index was lower in patients with PD than in patients with ET (p < 0.001) and HC (p < 0.001). Similarly, patients with PD showed a more severe EPVS burden in the CSO, BG, and midbrain compared to ET and HC. Moreover, the ALPS index was negatively correlated with disease severity in the PD subgroups; however, it did not differ within the ET subgroup. No differences in ALPS or EPVS were observed between the ET and HC groups. CONCLUSION In conclusion, DTI-ALPS and EPVS both provide neuroimaging evidence of glymphatic system dysfunction in PD, which further supports that PD is an α-synucleinopathy disease, while ET is a cerebellar dysfunction-related disease.
Collapse
Affiliation(s)
- Luyan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shaobing Dai
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Dayao Lv
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhiyun Wang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jinyu Lu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Haoting Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Min-Min Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Droby A, Artzi M, Lerman H, Hutchison RM, Bashat DB, Omer N, Gurevich T, Orr-Urtreger A, Cohen B, Cedarbaum JM, Sapir EE, Giladi N, Mirelman A, Thaler A. Aberrant dopamine transporter and functional connectivity patterns in LRRK2 and GBA mutation carriers. NPJ Parkinsons Dis 2022; 8:20. [PMID: 35241697 PMCID: PMC8894349 DOI: 10.1038/s41531-022-00285-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Non-manifesting carriers (NMCs) of Parkinson’s disease (PD)-related mutations such as LRRK2 and GBA are at an increased risk for developing PD. Dopamine transporter (DaT)-spectral positron emission computed tomography is widely used for capturing functional nigrostriatal dopaminergic activity. However, it does not reflect other ongoing neuronal processes; especially in the prodromal stages of the disease. Resting-state fMRI (rs-fMRI) has been proposed as a mode for assessing functional alterations associated with PD, but its relation to dopaminergic deficiency remains unclear. We aimed to study the association between presynaptic striatal dopamine uptake and functional connectivity (FC) patterns among healthy first-degree relatives of PD patients with mutations in LRRK2 and GBA genes. N = 85 healthy first-degree subjects were enrolled and genotyped. All participants underwent DaT and rs-fMRI scans, as well as a comprehensive clinical assessment battery. Between-group differences in FC within striatal regions were investigated and compared with striatal binding ratios (SBR). N = 26 GBA-NMCs, N = 25 LRRK2-NMCs, and N = 34 age-matched nonmanifesting noncarriers (NM-NCs) were included in each study group based on genetic status. While genetically-defined groups were similar across clinical measures, LRRK2-NMCs demonstrated lower SBR in the right putamen compared with NM-NCs, and higher right putamen FC compared to GBA-NMCs. In this group, higher striatal FC was associated with increased risk for PD. The observed differential SBR and FC patterns among LRRK2-NMCs and GBA-NMCs indicate that DaTscan and FC assessments might offer a more sensitive prediction of the risk for PD in the pre-clinical stages of the disease.
Collapse
Affiliation(s)
- Amgad Droby
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Moran Artzi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Dafna Ben Bashat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batsheva Cohen
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Einat Even Sapir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
5
|
Sar-El R, Sharon H, Lubianiker N, Hendler T, Raz G. Inducing a Functional-Pharmacological Coupling in the Human Brain to Achieve Improved Drug Effect. Front Neurosci 2020; 14:557874. [PMID: 33154714 PMCID: PMC7586318 DOI: 10.3389/fnins.2020.557874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roy Sar-El
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Roy Sar-El,
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gal Raz
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Steve Tisch School of Film and Television, Tel Aviv University, Tel Aviv, Israel
- Gal Raz,
| |
Collapse
|
6
|
Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging Behav 2020; 13:1009-1020. [PMID: 29971685 DOI: 10.1007/s11682-018-9920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disturbances in reward processing occur in Parkinson's disease (PD) however it is unclear whether these are solely drug-related. We applied an event-related fMRI gambling task to a group of non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene, in order to assess the reward network in an "at risk" population for future development of PD. Sixty-eight non-manifesting participants, 32 of which were non-manifesting non-carriers (NMNC), performed a gambling task which included defined intervals of anticipation and response to both reward and punishment in an fMRI setup. Behavior and cerebral activations were measured using both hypothesis driven and whole brain analysis. NMC demonstrated higher trait anxiety scores (p = 0.04) compared to NMNC. Lower activations were detected among NMC during risky anticipation in the left nucleus accumbens (NAcc) (p = 0.05) and during response to punishment in the right insula (p = 0.02), with higher activations among NMC during safe anticipation in the right insula (p = 0.02). Psycho-Physiological Interaction (PPI) analysis from the NAcc and insula revealed differential connectivity patterns. Whole brain analysis demonstrated divergent between-group activations in distributed cortical regions, bilateral caudate, left midbrain, when participants were required to press the response button upon making their next chosen move. Abnormal neural activity in both the reward and motor networks were detected in NMC indicating involvement of the ventral striatum regardless of medication use in "at risk" individuals for future development of PD.
Collapse
|
7
|
Saunders-Pullman R, Mirelman A, Alcalay RN, Wang C, Ortega RA, Raymond D, Mejia-Santana H, Orbe-Reilly M, Johannes BA, Thaler A, Ozelius L, Orr-Urtreger A, Marder KS, Giladi N, Bressman SB. Progression in the LRRK2-Asssociated Parkinson Disease Population. JAMA Neurol 2019; 75:312-319. [PMID: 29309488 DOI: 10.1001/jamaneurol.2017.4019] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Few prospective longitudinal studies have evaluated the progression of Parkinson disease (PD) in patients with the leucine-rich repeat kinase 2 (LRRK2 [OMIM 609007]) mutation. Knowledge about such progression will aid clinical trials. Objective To determine whether the longitudinal course of PD in patients with the LRRK2 mutation differs from the longitudinal course of PD in patients without the mutation. Design, Setting, and Participants A prospective comprehensive assessment of a large cohort of patients from 3 sites with LRRK2 PD or with nonmutation PD was conducted from July 21, 2009, to September 30, 2016. All patients of Ashkenazi Jewish ancestry with PD were approached at each site; approximately 80% agreed to an initial visit. A total of 545 patients of Ashkenazi Jewish descent with PD who had 1 to 4 study visits were evaluated. A total of 144 patients (26.4%) had the LRRK2 G2019S mutation. Patients with GBA (OMIM 606463) mutations were excluded from the analysis. Main Outcomes and Measures Linear mixed-effects models for longitudinal motor scores were used to examine the association of LRRK2 mutation status with the rate of change in Unified Parkinson's Disease Rating Scale III scores using disease duration as the time scale, adjusting for sex, site, age, disease duration, cognitive score, and levodopa-equivalent dose at baseline. Mixed-effects models were used to assess change in cognition, as measured by Montreal Cognitive Assessment scores. Results Among the 545 participants, 233 were women, 312 were men, and the mean (SD) age was 68.2 (9.1) years for participants with the LRRK2 mutation and 67.8 (10.7) years for those without it. Seventy-two of 144 participants with the LRRK2 mutation and 161 of 401 participants with no mutation were women. The estimate (SE) of the rate of change in the Unified Parkinson's Disease Rating Scale III motor score per year among those with the LRRK2 mutation (0.689 [0.192] points per year) was less than among those without the mutation (1.056 [0.187] points per year; difference, -0.367 [0.149] points per year; P = .02). The estimate (SE) of the difference in the rate of change of the Montreal Cognitive Assessment score between those with the LRRK2 mutation (-0.096 [0.090] points per year) and those without the mutation (-0.192 [0.102] points per year) did not reach statistical significance (difference, 0.097 [0.055] points per year; P = .08). Conclusions and Relevance Prospective longitudinal follow-up of patients with PD with or without the LRRK2 G2019S mutation supports data from a cross-sectional study and demonstrates a slower decline in motor Unified Parkinson's Disease Rating Scale scores among those with LRRK2 G2019S-associated PD.
Collapse
Affiliation(s)
- Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, New York
| | - Cuiling Wang
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Department of Epidemiology and Family Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Brooke A Johannes
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Karen S Marder
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
8
|
Yaple ZA, Stevens WD, Arsalidou M. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. Neuroimage 2019; 196:16-31. [DOI: 10.1016/j.neuroimage.2019.03.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022] Open
|
9
|
Postuma RB, Berg D. Prodromal Parkinson's Disease: The Decade Past, the Decade to Come. Mov Disord 2019; 34:665-675. [DOI: 10.1002/mds.27670] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ronald B. Postuma
- Department of NeurologyMontreal General Hospital Montreal, Quebec Canada
| | - Daniela Berg
- Department of NeurologyChristian‐Albrechts‐University of Kiel Kiel Germany
| |
Collapse
|
10
|
Thaler A. Structural and Functional MRI in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:261-287. [PMID: 30409255 DOI: 10.1016/bs.irn.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Between 10 and 15% of Parkinson disease (PD) cases can be traced to a genetically identified causative mutation which currently number over 40. This enables the study of both "at risk" populations for future development of PD and a unique sub-group of genetically determined patient population. Structural and functional magnetic imaging has the potential of assisting diagnosis, early detection and disease progression as it is relatively cheap and easy to implement. However, the large variety of imaging options and different analytical approaches hamper the pursuit of a unified imaging biomarker. This chapter details the current imaging options and summarizes the findings among both genetically determined patients with PD and their non-manifesting first degree relatives, speculating on possible compensational mechanisms while mapping future directions in order to better utilize MRI in the research of genetic PD.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Altered intrinsic brain functional connectivity in drug-naïve Parkinson's disease patients with LRRK2 mutations. Neurosci Lett 2018; 675:145-151. [PMID: 29567424 DOI: 10.1016/j.neulet.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/24/2018] [Accepted: 03/18/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) has been recently identified as a causative gene of Parkinson's disease (PD), and the LRRK2 R1628P and G2385R mutations are common in ethnic Han-Chinese PD patients. However, the pathogenic mechanism of LRRK2 mutations in PD remains largely unknown. METHODS Resting-state functional MRI (fMRI) was used to assess the functional connectivity (FC) of the striatal subregions of 11 ethnic Han-Chinese drug-naïve PD patients with the LRRK2 R1628P or G2385R mutations, 11 ethnic Han-Chinese drug-naïve PD patients without such mutations, and 22 healthy control (HC) subjects. RESULTS Compared with the HC subjects, both subgroups of the PD patients showed alterations in the FC within the sensorimotor-striatal and posterior putamen-striatal circuits. In addition, relative to the subgroup of PD patients without the LRRK2 mutations, the subgroup of PD patients with the LRRK2 mutation exhibited decreased FC between the putamen and the bilateral superior frontal gyri, precuneus and calcarine gyri. The FC between the putamen and the bilateral superior frontal gyri decreased with age in the LRRK2 mutation carriers but not in the non-carriers. CONCLUSION Differences in the FC between ethnic Han-Chinese drug-naïve PD patients with and without the LRRK2 mutation may provide new insights into the understanding of the neural functional changes in ethnic Han-Chinese PD patients with LRRK2 mutations. However, our results are preliminary, and further investigations are needed.
Collapse
|
12
|
The impact of murine LRRK2 G2019S transgene overexpression on acute responses to inflammatory challenge. Brain Behav Immun 2018; 67:246-256. [PMID: 28893563 DOI: 10.1016/j.bbi.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/07/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023] Open
Abstract
The most common Parkinson's disease (PD) mutation is the gain-of-function LRRK2 G2019S variant, which has also been linked to inflammatory disease states. Yet, little is known of the role of G2019S in PD related complex behavioral or immune/hormonal processes in response to inflammatory/toxicant challenges. Hence, we characterized the behavioral, neuroendocrine-immune and central monoaminergic responses in G2019S overexpressing mutants following systemic interferon-gamma (IFN-γ) or lipopolysaccharide (LPS) administration. Although LPS markedly (and IFN-γ modestly in some cases) increased cytokine and corticosterone levels, while inducing pronounced sickness and home-cage activity deficits, the G2019S mutation had no effect on these parameters. No differences were observed with regards to brain microglia with the acute LPS injection, regardless of genotype. Nor did the G2019S mutation influence neurotransmitter levels within the medial prefrontal cortex or paraventricular nucleus of the hypothalamus. However, the LRRK2 G2019S transgenic mice did have altered monoamine levels within the striatum and hippocampus. Indeed, G2019S mice had altered basal levels and turnover of dopamine within the striatum, along with changes in hippocampal serotonin and norepinephrine activity in response to LPS and IFN-γ. The present findings suggest the importance of murine G2019S in hippocampal and striatal neurotransmission, but that the transgene didn't appear to be involved in functional behavioral and stress-like hormonal and cytokine changes provoked by inflammatory insults.
Collapse
|
13
|
Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. J Neurosci 2017; 36:7128-41. [PMID: 27383589 DOI: 10.1523/jneurosci.3314-15.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.
Collapse
|
14
|
Bregman N, Thaler A, Mirelman A, Helmich RC, Gurevich T, Orr-Urtreger A, Marder K, Bressman S, Bloem BR, Giladi N. A cognitive fMRI study in non-manifesting LRRK2 and GBA carriers. Brain Struct Funct 2016; 222:1207-1218. [PMID: 27401793 DOI: 10.1007/s00429-016-1271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Mutations in the GBA and LRRK2 genes account for one-third of the prevalence of Parkinson's disease (PD) in Ashkenazi Jews. Non-manifesting carriers (NMC) of these mutations represent a population at risk for future development of PD. PD patient who carry mutations in the GBA gene demonstrates more significant cognitive decline compared to idiopathic PD patients. We assessed cognitive domains using fMRI among NMC of both LRRK2 and GBA mutations to better understand pre-motor cognitive functions in these populations. Twenty-one LRRK2-NMC, 10 GBA-NMC, and 22 non-manifesting non-carriers (NMNC) who participated in this study were evaluated using the standard questionnaires and scanned while performing two separate cognitive tasks; a Stroop interference task and an N-Back working memory task. Cerebral activation patterns were assessed using both whole brain and predefined region of interest (ROI) analysis. Subjects were well matched in all demographic and clinical characteristics. On the Stroop task, in spite of similar behavior, GBA-NMC demonstrated increased task-related activity in the right medial frontal gyrus and reduced task-related activity in the left lingual gyrus compared to both LRRK2-NMC and NMNC. In addition, GBA-NMC had higher activation patterns in the incongruent task compared to NMNC in the left medial frontal gyrus and bilateral precentral gyrus. No whole-brain differences were noted between groups on the N-Back task. Paired cognitive and task-related performance between GBA-NMC, LRRK2-NMC, and NMNC could indicate that the higher activation patterns in the incongruent Stroop condition among GBA-NMC compared to LRRK2-NMC and NMNC may represent a compensatory mechanism that enables adequate cognitive performance.
Collapse
Affiliation(s)
- Noa Bregman
- Department of Neurology, Memory and Attention Disorders Center, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel. .,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. .,Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Medical Center, Tel-Aviv, Israel.
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rick C Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Karen Marder
- Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|