1
|
Diniz CRAF, Crestani AP, Casarotto PC, Biojone C, Cannarozzo C, Winkel F, Prozorov MA, Kot EF, Goncharuk SA, Benette Marques D, Rakauskas Zacharias L, Autio H, Sahu MP, Borges-Assis AB, Leite JP, Mineev KS, Castrén E, Resstel LBM. Fluoxetine and Ketamine Enhance Extinction Memory and Brain Plasticity by Triggering the p75 Neurotrophin Receptor Proteolytic Pathway. Biol Psychiatry 2024:S0006-3223(24)01425-2. [PMID: 38945387 DOI: 10.1016/j.biopsych.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain. As such qualities were found to be crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR. METHODS Enzyme-linked immunosorbent assay-based binding and nuclear magnetic resonance spectroscopy were performed to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to investigate whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75NTR knockout mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verify how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male wild-type mice and rats. RESULTS Antidepressants were found to bind to p75NTR. FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes. CONCLUSIONS We hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain's ability for remodeling.
Collapse
Affiliation(s)
- Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Center for Neuroscience, University of California, Davis, Davis, California.
| | - Ana Paula Crestani
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Plinio Cabrera Casarotto
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Biomedicine and Translational Neuropsychiatry Unit-Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Cecilia Cannarozzo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail A Prozorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Rakauskas Zacharias
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Henri Autio
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Anna Bárbara Borges-Assis
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
2
|
Nugent FS, Li KW, Chen L. Editorial: Synaptic plasticity and dysfunction, friend or foe? Front Synaptic Neurosci 2023; 15:1204605. [PMID: 37206953 PMCID: PMC10189113 DOI: 10.3389/fnsyn.2023.1204605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
- Fereshteh S. Nugent
- F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- *Correspondence: Fereshteh S. Nugent
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Ka Wan Li
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
- Lu Chen
| |
Collapse
|
3
|
Sung Y, Kaang BK. The Three Musketeers in the Medial Prefrontal Cortex: Subregion-specific Structural and Functional Plasticity Underlying Fear Memory Stages. Exp Neurobiol 2022; 31:221-231. [PMID: 36050222 PMCID: PMC9471411 DOI: 10.5607/en22012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Fear memory recruits various brain regions with long-lasting brain-wide subcellular events. The medial prefrontal cortex processes the emotional and cognitive functions required for adequately handling fear memory. Several studies have indicated that subdivisions within the medial prefrontal cortex, namely the prelimbic, infralimbic, and anterior cingulate cortices, may play different roles across fear memory states. Through a dedicated cytoarchitecture and connectivity, the three different regions of the medial prefrontal cortex play a specific role in maintaining and extinguishing fear memory. Furthermore, synaptic plasticity and maturation of neural circuits within the medial prefrontal cortex suggest that remote memories undergo structural and functional reorganization. Finally, recent technical advances have enabled genetic access to transiently activated neuronal ensembles within these regions, suggesting that memory trace cells in these regions may preferentially contribute to processing specific fear memory. We reviewed recently published reports and summarize the molecular, synaptic and cellular events occurring within the medial prefrontal cortex during various memory stages.
Collapse
Affiliation(s)
- Yongmin Sung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Romero-Barragán MT, Gruart A, Delgado-García JM. Transsynaptic Long-Term Potentiation in the Hippocampus of Behaving Mice. Front Synaptic Neurosci 2022; 13:811806. [PMID: 35126083 PMCID: PMC8810508 DOI: 10.3389/fnsyn.2021.811806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Long-term potentiation (LTP) is an experimental procedure that shares certain mechanisms with neuronal learning and memory processes and represents a well-known example of synaptic plasticity. LTP consists of an increase of the synaptic response to a control stimulus following the presentation of a high-frequency stimulation (HFS) train to an afferent pathway. This technique is studied mostly in the hippocampus due to the latter’s high susceptibility and its laminar nature which facilitates the location of defined synapses. Although most preceding studies have been performed in vitro, we have developed an experimental approach to carry out these experiments in alert behaving animals. The main goal of this study was to confirm the existence of synaptic changes in strength in synapses that are post-synaptic to the one presented with the HFS. We recorded field excitatory post-synaptic potentials (fEPSPs) evoked in five hippocampal synapses, from both hemispheres, of adult male mice. HFS was presented to the perforant pathway (PP). We characterized input/output curves, paired-pulse stimulation, and LTP of these synapses. We also performed depth-profile recordings to determine differences in fEPSP latencies. Collected data indicate that the five selected synapses have similar basic electrophysiological properties, a fact that enables an easier comparison of LTP characteristics. Importantly, we observed the presence of significant LTP in the contralateral CA1 (cCA1) area following the control stimulation of non-HFS-activated pathways. These results indicate that LTP appears as a physiological process present in synapses located far away from the HFS-stimulated afferent pathway.
Collapse
|
5
|
Spontaneous head twitches in aged rats: behavioral and molecular study. Psychopharmacology (Berl) 2022; 239:3847-3857. [PMID: 36278982 PMCID: PMC9672005 DOI: 10.1007/s00213-022-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
RATIONALE We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.
Collapse
|
6
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Wu Y, Mitra R. Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 2020; 170:360-363. [PMID: 32710912 DOI: 10.1016/j.neures.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Chronic stress causes dendritic atrophy of neurons within the hippocampus and medial prefrontal cortex. In this report, we show that chronic stress leads to reduced long-term potentiation in the pathway from the hippocampus to the medial prefrontal cortex of rats; and that such reduction is rescued by enriched housing environment. Connectivity between the hippocampus and medial prefrontal cortex is proposed to be an essential substrate that is often compromised in several psychiatric disorders. Our observations suggest that a short period of complexity in the housing environment has the potential to protect the functional integrity of this important connection.
Collapse
Affiliation(s)
- You Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore.
| |
Collapse
|
8
|
Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Shahabi P. Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect 2020; 10:157-169. [PMID: 32264690 DOI: 10.1089/brain.2019.0733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Among various hippocampal rhythms, including sharp-wave ripples, gamma, and theta, theta rhythm is crucial for cognitive processing, particularly learning and memory. Theta oscillations are observable in both humans and rodents during spatial navigations. However, the hippocampus (Hip) is well known as the generator of current rhythm, and other brain areas, such as prefrontal cortex (PFC), can be affected by theta rhythm, too. The PFC is a core structure for the execution of diverse higher cortical functions defined as cognition. This region is connected to the hippocampus through the hippocampal/prefrontal pathway; hereby, theta oscillations convey hippocampal inputs to the PFC and simultaneously synchronize the activity of these two regions during memory, learning and other cognitive tasks. Importantly, thalamic nucleus reunions (nRE) and basolateral amygdala are salient relay structures modulating the synchronization, firing rate, and phase-locking of the hippocampal/prefrontal oscillations. Herein, we summarized experimental studies, chiefly animal researches in which the theta rhythm of the Hip-PFC axis was investigated using either electrophysiological assessments in rodent or integrated diffusion-weighted imaging and electroencephalography in human cases under memory-based tasks. Moreover, we briefly reviewed alterations of theta rhythm in some CNS diseases with the main feature of cognitive disturbance. Interestingly, animal studies implied the interruption of theta synchronization in psychiatric disorders such as schizophrenia and depression. To disclose the precise role of theta rhythm fluctuations through the Hip-PFC axis in cognitive performances, further studies are needed.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Esteves I, Lopes-Aguiar C, Rossignoli M, Ruggiero R, Broggini A, Bueno-Junior L, Kandratavicius L, Monteiro M, Romcy-Pereira R, Leite J. Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease. Neuroscience 2017; 353:87-97. [DOI: 10.1016/j.neuroscience.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023]
|
10
|
Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, Yonehara K, Roska B, Xu C, Lüthi A, Caille S, Georges F. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nat Commun 2017; 8:14456. [PMID: 28218243 PMCID: PMC5321732 DOI: 10.1038/ncomms14456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 01/03/2017] [Indexed: 01/07/2023] Open
Abstract
Anxiety is controlled by multiple neuronal circuits that share robust and reciprocal connections with the bed nucleus of the stria terminalis (BNST), a key structure controlling negative emotional states. However, it remains unknown how the BNST integrates diverse inputs to modulate anxiety. In this study, we evaluated the contribution of infralimbic cortex (ILCx) and ventral subiculum/CA1 (vSUB/CA1) inputs in regulating BNST activity at the single-cell level. Using trans-synaptic tracing from single-electroporated neurons and in vivo recordings, we show that vSUB/CA1 stimulation promotes opposite forms of in vivo plasticity at the single-cell level in the anteromedial part of the BNST (amBNST). We find that an NMDA-receptor-dependent homosynaptic long-term potentiation is instrumental for anxiolysis. These findings suggest that the vSUB/CA1-driven LTP in the amBNST is involved in eliciting an appropriate response to anxiogenic context and dysfunction of this compensatory mechanism may underlie pathologic anxiety states.
Collapse
Affiliation(s)
- Christelle Glangetas
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France
| | - Léma Massi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Giulia R Fois
- Centre National de la Recherche Scientifique, Neurodegeneratives Diseases Institute, UMR 5293, F-33076 Bordeaux, France
| | - Marion Jalabert
- Université de la Méditerranée UMR S901, F-13009 Aix-Marseille 2, France.,INMED, F-13009 Marseille, France
| | - Delphine Girard
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, Neurodegeneratives Diseases Institute, UMR 5293, F-33076 Bordeaux, France
| | - Marco Diana
- 'G. Minardi' Cognitive Neuroscience Laboratory, Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Keisuke Yonehara
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Botond Roska
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Chun Xu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Stéphanie Caille
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégrative d'Aquitaine, BP31, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, UMR 5287-Institut de Neurosciences Cognitives et Intégrative d'Aquitaine, F-33076 Bordeaux, France
| | - François Georges
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33076 Bordeaux, France.,Centre National de la Recherche Scientifique, Neurodegeneratives Diseases Institute, UMR 5293, F-33076 Bordeaux, France
| |
Collapse
|
11
|
Activation of beta- and alpha-2-adrenoceptors in the basolateral amygdala has opposing effects on hippocampal-prefrontal long-term potentiation. Neurobiol Learn Mem 2017; 137:163-170. [DOI: 10.1016/j.nlm.2016.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
12
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|