1
|
Li Y, Yang L, Hao D, Chen Y, Ye-Lin Y, Li CSR, Li G. Functional Networks of Reward and Punishment Processing and Their Molecular Profiles Predicting the Severity of Young Adult Drinking. Brain Sci 2024; 14:610. [PMID: 38928610 PMCID: PMC11201596 DOI: 10.3390/brainsci14060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol misuse is associated with altered punishment and reward processing. Here, we investigated neural network responses to reward and punishment and the molecular profiles of the connectivity features predicting alcohol use severity in young adults. We curated the Human Connectome Project data and employed connectome-based predictive modeling (CPM) to examine how functional connectivity (FC) features during wins and losses are associated with alcohol use severity, quantified by Semi-Structured Assessment for the Genetics of Alcoholism, in 981 young adults. We combined the CPM findings and the JuSpace toolbox to characterize the molecular profiles of the network connectivity features of alcohol use severity. The connectomics predicting alcohol use severity appeared specific, comprising less than 0.12% of all features, including medial frontal, motor/sensory, and cerebellum/brainstem networks during punishment processing and medial frontal, fronto-parietal, and motor/sensory networks during reward processing. Spatial correlation analyses showed that these networks were associated predominantly with serotonergic and GABAa signaling. To conclude, a distinct pattern of network connectivity predicted alcohol use severity in young adult drinkers. These "neural fingerprints" elucidate how alcohol misuse impacts the brain and provide evidence of new targets for future intervention.
Collapse
Affiliation(s)
- Yashuang Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
| | - Yiyao Ye-Lin
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Chiang-Shan Ray Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| |
Collapse
|
2
|
Degiorgis L, Arefin TM, Ben-Hamida S, Noblet V, Antal C, Bienert T, Reisert M, von Elverfeldt D, Kieffer BL, Harsan LA. Translational Structural and Functional Signatures of Chronic Alcohol Effects in Mice. Biol Psychiatry 2022; 91:1039-1050. [PMID: 35654559 DOI: 10.1016/j.biopsych.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol. Here, we combined structural and functional magnetic resonance imaging and connectome mapping in mice to establish brain-wide fingerprints of alcohol effects with translatable potential. METHODS Mice underwent a chronic intermittent alcohol drinking protocol for 6 weeks before being imaged under medetomidine anesthesia. We performed open-ended multivariate analysis of structural data and functional connectivity mapping on the same subjects. RESULTS Structural analysis showed alcohol effects for the prefrontal cortex/anterior insula, hippocampus, and somatosensory cortex. Integration with microglia histology revealed distinct alcohol signatures, suggestive of advanced (prefrontal cortex/anterior insula, somatosensory cortex) and early (hippocampus) inflammation. Functional analysis showed major alterations of insula, ventral tegmental area, and retrosplenial cortex connectivity, impacting communication patterns for salience (insula), reward (ventral tegmental area), and default mode (retrosplenial cortex) networks. The insula appeared as a most sensitive brain center across structural and functional analyses. CONCLUSIONS This study demonstrates alcohol effects in mice, which possibly underlie lower top-down control and impaired hedonic balance documented at the behavioral level, and aligns with neuroimaging findings in humans despite the potential limitation induced by medetomidine sedation. This study paves the way to identify further biomarkers and to probe neurobiological mechanisms of alcohol effects using genetic and pharmacological manipulations in mouse models of alcohol drinking and dependence.
Collapse
Affiliation(s)
- Laetitia Degiorgis
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Tanzil Mahmud Arefin
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| | - Sami Ben-Hamida
- INSERM U1114, University Hospital of Strasbourg, Strasbourg, France; INSERM U1247, research group on alcohol and pharmacodependance (GRAP), University of Picardie Jules-Verne, Amiens, France
| | - Vincent Noblet
- Images, Learning, Geometry and Statistics team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Cristina Antal
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Faculty of Medicine, Histology Institute and Unité Fonctionnelle de Foetopathologie, University Hospital of Strasbourg, Strasbourg, France
| | - Thomas Bienert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | | | - Laura-Adela Harsan
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Department of Biophysics and Nuclear Medicine, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
König N, Bimpisidis Z, Dumas S, Wallén-Mackenzie Å. Selective Knockout of the Vesicular Monoamine Transporter 2 ( Vmat2) Gene in Calbindin2/Calretinin-Positive Neurons Results in Profound Changes in Behavior and Response to Drugs of Abuse. Front Behav Neurosci 2020; 14:578443. [PMID: 33240055 PMCID: PMC7680758 DOI: 10.3389/fnbeh.2020.578443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2) has a range of functions in the central nervous system, from sequestering toxins to providing conditions for the quantal release of monoaminergic neurotransmitters. Monoamine signaling regulates diverse functions from arousal to mood, movement, and motivation, and dysregulation of VMAT2 function is implicated in various neuropsychiatric diseases. While all monoamine-releasing neurons express the Vmat2 gene, only a subset is positive for the calcium-binding protein Calbindin 2 (Calb2; aka Calretinin, 29 kDa Calbindin). We recently showed that about half of the dopamine neurons in the mouse midbrain are positive for Calb2 and that Calb2 is an early developmental marker of midbrain dopamine cells. Calb2-positive neurons have also been identified in other monoaminergic areas, yet the role of Calb2-positive monoaminergic neurons is poorly understood. To selectively address the impact of Calb2-positive monoaminergic neurons in behavioral regulation, we took advantage of the Cre-LoxP system to create a new conditional knockout (cKO) mouse line in which Vmat2 expression is deleted selectively in Calb2-Cre-positive neurons. In this Vmat2lox/lox;Calb2−Cre cKO mouse line, gene targeting of Vmat2 was observed in several distinct monoaminergic areas. By comparing control and cKO mice in a series of behavioral tests, specific dissimilarities were identified. In particular, cKO mice were smaller than control mice and showed heightened sensitivity to the stereotypy-inducing effects of amphetamine and slight reductions in preference toward sucrose and ethanol, as well as a blunted response in the elevated plus maze test. These data uncover new knowledge about the role of genetically defined subtypes of neurons in the brain’s monoaminergic systems.
Collapse
Affiliation(s)
- Niclas König
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Zisis Bimpisidis
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
5
|
Laine MA, Sokolowska E, Dudek M, Callan SA, Hyytiä P, Hovatta I. Brain activation induced by chronic psychosocial stress in mice. Sci Rep 2017; 7:15061. [PMID: 29118417 PMCID: PMC5678090 DOI: 10.1038/s41598-017-15422-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic psychosocial stress is a well-established risk factor for neuropsychiatric diseases. Abnormalities in brain activity have been demonstrated in patients with stress-related disorders. Global brain activation patterns during chronic stress exposure are less well understood but may have strong modifying effects on specific brain circuits and thereby influence development of stress-related pathologies. We determined neural activation induced by chronic social defeat stress, a mouse model of psychosocial stress. To assess chronic activation with an unbiased brain-wide focus we used manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemical staining of ∆FOSB, a transcription factor induced by repeated neural activity. One week after 10-day social defeat we observed significantly more activation in several brain regions known to regulate depressive and anxiety-like behaviour, including the prefrontal cortex, bed nucleus of stria terminalis, ventral hippocampus and periaqueductal grey in stressed compared to control mice. We further established that the correlation of ∆FOSB positive cells between specific brain regions was altered following chronic social defeat. Chronic activation of these neural circuits may relate to persistent brain activity changes occurring during chronic psychosocial stress exposure, with potential relevance for the development of anxiety and depression in humans.
Collapse
Affiliation(s)
- Mikaela A Laine
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ewa Sokolowska
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Mateusz Dudek
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | | | - Petri Hyytiä
- Department of Pharmacology, University of Helsinki, Helsinki, Finland.
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|