1
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Viden A, Ch'ng SS, Walker LC, Shesham A, Hamilton SM, Smith CM, Lawrence AJ. Organisation of enkephalin inputs and outputs of the central nucleus of the amygdala in mice. J Chem Neuroanat 2022; 125:102167. [PMID: 36182026 DOI: 10.1016/j.jchemneu.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells. Here, we used a recently developed transgenic Penk-Cre mouse line to advance our understanding of the efferent and afferent connectivity of ppENK in the CeA. First, to determine the fidelity of Cre expression in Penk-Cre transgenic mice, we conducted RNAscope in the CeA of Penk-Cre mice. Our analysis revealed that 96.6% of CeA Cre+ neurons co-expressed pENK mRNA, and 99.7% of CeA pENK+ neurons co-expressed Cre mRNA, indicating faithful recapitulation of Cre expression in CeA ppENK-expressing cells, supporting the fidelity of the Penk-Cre reporter mouse. Anterograde tracing of CeAPenk cells showed strong efferent projections to the extended amygdala, midbrain and hindbrain PBN and NTS. Retrograde tracing of Penk afferents to the CeA were more restricted, with primary innervation originating within the amygdala complex and bed nucleus of the stria terminalis, and minor innervation from the parabrachial nucleus and nucleus of the solitary tract. Together, our data provide a comprehensive map of ENKergic efferent and afferent connectivity of the CeA in Penk-Cre mice. Further, we highlight both the utility and limitations of the Penk-Cre mice to study the function of CeA, PBN and NTS ppENK cells.
Collapse
Affiliation(s)
- Aida Viden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Department of Physiology, Monash University, Clayton, VIC 3800
| | - Sabine M Hamilton
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Craig M Smith
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052.
| |
Collapse
|
3
|
Warlow SM, Berridge KC. Incentive motivation: 'wanting' roles of central amygdala circuitry. Behav Brain Res 2021; 411:113376. [PMID: 34023307 DOI: 10.1016/j.bbr.2021.113376] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
The central nucleus of amygdala (CeA) mediates positively-valenced reward motivation as well as negatively-valenced fear. Optogenetic or neurochemical stimulation of CeA circuitry can generate intense incentive motivation to pursue and consume a paired natural food, sex, or addictive drug reward, and even create maladaptive 'wanting what hurts' such as attraction to a shock rod. Evidence indicates CeA stimulations selectively amplify incentive motivation ('wanting') but not hedonic impact ('liking') of the same reward. Further, valence flips can occur for CeA contributions to motivational salience. That is, CeA stimulation can promote either incentive motivation or fearful motivation, even in the same individual, depending on situation. These findings may carry implications for understanding CeA roles in neuropsychiatric disorders involving aberrant motivational salience, ranging from addiction to paranoia and anxiety disorders.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Haaranen M, Schäfer A, Järvi V, Hyytiä P. Chemogenetic Stimulation and Silencing of the Insula, Amygdala, Nucleus Accumbens, and Their Connections Differentially Modulate Alcohol Drinking in Rats. Front Behav Neurosci 2020; 14:580849. [PMID: 33328918 PMCID: PMC7671963 DOI: 10.3389/fnbeh.2020.580849] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The anterior insular cortex is hypothesized to represent interoceptive effects of drug reward in the service of goal-directed behavior. The insula is richly connected, but the insula circuitry in addiction remains poorly characterized. We examined the involvement of the anterior insula, amygdala, and nucleus accumbens, as well as the projections of the anterior insula to the central amygdala, basolateral amygdala (BLA), and nucleus accumbens core in voluntary alcohol drinking. We trained alcohol-preferring Alko Alcohol (AA) rats to drink alcohol during intermittent 2-h sessions. We then expressed excitatory or inhibitory designer receptors [designer receptors exclusively activated by designer drugs (DREADDs)] in the anterior insula, nucleus accumbens, or amygdala by means of adenovirus-mediated gene transfer and activated the DREADDs with clozapine-N-oxide (CNO) prior to the drinking sessions. Next, to examine the role of specific insula projections, we expressed FLEX-DREADDs in the efferent insula → nucleus accumbens core, insula → central amygdala, and insula → BLA projections by means of a retrograde AAV-Cre vector injected into the insula projection areas. In the anterior insula and amygdala, excitatory Gq-DREADDs significantly attenuated alcohol consumption. In contrast, in the nucleus accumbens, the Gq-DREADD stimulation increased alcohol drinking, and the inhibitory Gi-DREADDs suppressed it. The Gq-DREADDs expressed in the insula → nucleus accumbens core and insula → central amygdala projections increased alcohol intake, whereas inhibition of these projections had no effect. These data demonstrate that the anterior insula, along with the amygdala and nucleus accumbens, has a key role in controlling alcohol drinking by providing excitatory input to the central amygdala and nucleus accumbens to enhance alcohol reward.
Collapse
Affiliation(s)
- Mia Haaranen
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Annika Schäfer
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Vilja Järvi
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Assari S, Boyce S, Bazargan M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sci 2020; 10:brainsci10100703. [PMID: 33022949 PMCID: PMC7600639 DOI: 10.3390/brainsci10100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Nucleus accumbens (NAc) is a brain structure with a well-established role in the brain reward processing system. Altered function of the NAc is shown to have a role in the development of food addiction and obesity. However, less is known about sex differences in the role of NAc function as a predictor of children’s change in body mass index (BMI) over time. Aim: We used the Adolescent Brain Cognitive Development data (version 2.01) to investigate sex differences in the predictive role of the NAc functional connectivity with the frontoparietal network on children’s BMI change over a one-year follow-up period. Methods: This 1-year longitudinal study successfully followed 3784 9–10-year-old children. Regression models were used to analyze the data. The predictor variable was NAc functional connectivity with the frontoparietal network measured using resting-state functional magnetic resonance imaging (fMRI). The primary outcome was BMI at the end of the 1-year follow up. Covariates included race, ethnicity, age, socioeconomic factors, and baseline BMI. Sex was the effect modifier. Results: NAc functional connectivity with the frontoparietal network was predictive of BMI changes over time. This association remained significant above and beyond all covariates. The above association, however, was only significant in female, not male children. Conclusion: The epidemiological observation that NAc functional connectivity is associated with BMI changes in children is an extension of well-controlled laboratory studies that have established the role of the NAc in the brain reward processing. More research is needed on sex differences in the brain regions that contribute to childhood obesity.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
- Correspondence: ; Tel.: +(734)-232-0445; Fax: +734-615-8739
| | - Shanika Boyce
- Department of Pediatrics, Charles Drew University, Los Angeles, CA 90059, USA;
| | - Mohsen Bazargan
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Family Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Elorette C, Aguilar BL, Novak V, Forcelli PA, Malkova L. Dysregulation of behavioral and autonomic responses to emotional and social stimuli following bidirectional pharmacological manipulation of the basolateral amygdala in macaques. Neuropharmacology 2020; 179:108275. [PMID: 32835765 DOI: 10.1016/j.neuropharm.2020.108275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control. However, few studies have selectively examined these nuclei in the primate brain. Moreover, the majority of non-human primate studies have employed lesions, which only allow for unidirectional manipulation of amygdala activity. Thus, the effects of amygdala disinhibition on behavior in the primate are unknown. To address this gap, we pharmacologically inhibited by muscimol or disinhibited by bicuculline methiodide the basolateral complex of the amygdala (BLA; lateral, basal, and accessory basal) in nine awake, behaving male rhesus macaques (Macaca mulatta). We examined the effects of amygdala manipulation on: (1) behavioral responses to taxidermy snakes and social stimuli, (2) food competition and social interaction in dyads, (3) autonomic arousal as measured by cardiovascular response, and (4) prepulse inhibition of the acoustic startle (PPI) response. All modalities were impacted by pharmacological inhibition and/or disinhibition. Amygdala inhibition decreased fear responses to snake stimuli, increased examination of social stimuli, reduced competitive reward-seeking in dominant animals, decreased heart rate, and increased PPI response. Amygdala disinhibition restored fearful response after habituation to snakes, reduced competitive reward-seeking behavior in dominant animals, and lowered heart rate. Thus, both hypoactivity and hyperactivity of the basolateral amygdala can lead to dysregulated behavior, suggesting that a narrow range of activity is necessary for normal functions.
Collapse
Affiliation(s)
- Catherine Elorette
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA; Department of Neuroscience, Georgetown University Medical Center, USA.
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA.
| |
Collapse
|
7
|
Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med 2020; 6:4. [PMID: 32232112 PMCID: PMC7098236 DOI: 10.1186/s42234-020-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023] Open
Abstract
Addictive disorders are a severe health concern. Conventional therapies have just moderate success and the probability of relapse after treatment remains high. Brain stimulation techniques, such as transcranial Direct Current Stimulation (tDCS) and Deep Brain Stimulation (DBS), have been shown to be effective in reducing subjectively rated substance craving. However, there are few objective and measurable parameters that reflect neural mechanisms of addictive disorders and relapse. Key electrophysiological features that characterize substance related changes in neural processing are Event-Related Potentials (ERP). These high temporal resolution measurements of brain activity are able to identify neurocognitive correlates of addictive behaviours. Moreover, ERP have shown utility as biomarkers to predict treatment outcome and relapse probability. A future direction for the treatment of addiction might include neural interfaces able to detect addiction-related neurophysiological parameters and deploy neuromodulation adapted to the identified pathological features in a closed-loop fashion. Such systems may go beyond electrical recording and stimulation to employ sensing and neuromodulation in the pharmacological domain as well as advanced signal analysis and machine learning algorithms. In this review, we describe the state-of-the-art in the treatment of addictive disorders with electrical brain stimulation and its effect on addiction-related neurophysiological markers. We discuss advanced signal processing approaches and multi-modal neural interfaces as building blocks in future bioelectronics systems for treatment of addictive disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ivan Minev
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Reward Processing under Chronic Pain from the Perspective of "Liking" and "Wanting": A Narrative Review. Pain Res Manag 2019; 2019:6760121. [PMID: 31149319 PMCID: PMC6501242 DOI: 10.1155/2019/6760121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
The therapeutic goals of patients with chronic pain are not only to relieve pain but also to improve the quality of life. Chronic pain negatively affects various aspects of daily life, such as by decreasing the motivation to work and reward sensitivity, which may lead to difficulties in daily life or even unemployment. Human and animal studies have shown that chronic pain damages reward processing; the exploration of associated internal mechanisms may aid the development of treatments to repair this damage. Incentive salience theory, used widely to describe reward processing, divides this processing into “liking” (reward-induced hedonic sensory impact) and “wanting” (reward-induced motivation) components. It has been employed to explain pathological changes in reward processing induced by psychiatric disorders. In this review, we summarize the findings of studies of reward processing under chronic pain and examine the effects of chronic pain on “liking” and “wanting.” Evidence indicates that chronic pain compromises the “wanting” component of reward processing; we also discuss the neural mechanisms that may mediate this effect. We hope that this review aids the development of therapies to improve the quality of life of patients with chronic pain.
Collapse
|
9
|
Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol 2018. [PMID: 29524847 DOI: 10.1016/j.conb.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuromodulation therapies such as deep brain stimulation or transcranial magnetic stimulation have shown promise in reducing symptoms of addiction when applied to the prefontal cortex, nucleus accumbens or subthalamic nucleus. Pre-clinical investigations implicate modulation of the cortico-basal ganglia network in these therapeutic effects, and this mechanistic understanding is necessary to optimize stimulation paradigms. Recently, the principle that neuromodulation can reverse drug-evoked synaptic plasticity and reduce behavioral symptoms of addiction has inspired novel stimulation paradigms that have long-term effects in animal models. Pre-clinical studies have also raised the possibility that tailoring neuromodulation protocols can modulate distinct symptoms of addiction. Combining mechanistic knowledge of circuit dysfunction with emerging technologies for non-invasive neuromodulation holds promise for developing therapies for addiction and related disorders.
Collapse
Affiliation(s)
- Meaghan Creed
- University of Maryland School of Medicine, Department of Pharmacology, 655 West Baltimore Street, Bressler Research Building, 4-021, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Abstract
The central nucleus of the amygdala (CEA) is a striatum-like structure orchestrating a diverse set of adaptive behaviors, including defensive and appetitive responses [1-3]. Studies using anatomical, electrophysiological, imaging and optogenetic approaches revealed that the CEA network consists of recurrent inhibitory circuits comprised of precisely connected functionally and genetically defined cell types that can select and control specific behavioral outputs [3,4,5•,6•,7-9,11,12]. While bivalent functionality of the CEA in adaptive behavior has been clearly demonstrated, we are just beginning to understand to which degree individual CEA circuit elements are functionally segregated or overlapping. Importantly, recent studies seem to suggest that optogenetic manipulations of the same, or overlapping cell populations can give rise to distinct, or sometimes even opposite, behavioral phenotypes [5•,6•,9-12]. In this review, we discuss recent progress in our understanding of how defined CEA circuits can control defensive and appetitive behaviors, and how seemingly contradictory results could point to an integrated concept of CEA function.
Collapse
Affiliation(s)
- Jonathan P Fadok
- Department of Psychology, Program in Neuroscience, and Brain Institute, Tulane University, New Orleans, United States
| | - Milica Markovic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Philip Tovote
- University Hospital Würzburg, Institute of Clinical Neurobiology, Würzburg, Germany.
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Switzerland.
| |
Collapse
|
11
|
Prinz P, Stengel A. Deep Brain Stimulation-Possible Treatment Strategy for Pathologically Altered Body Weight? Brain Sci 2018; 8:brainsci8010019. [PMID: 29361753 PMCID: PMC5789350 DOI: 10.3390/brainsci8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
The treatment of obesity and eating disorders such as binge-eating disorder or anorexia nervosa is challenging. Besides lifestyle changes and pharmacological options, bariatric surgery represents a well-established and effective-albeit invasive-treatment of obesity, whereas for binge-eating disorder and anorexia nervosa mostly psychotherapy options exist. Deep brain stimulation (DBS), a method that influences the neuronal network, is by now known for its safe and effective applicability in patients with Parkinson’s disease. However, the use does not seem to be restricted to these patients. Recent preclinical and first clinical evidence points towards the use of DBS in patients with obesity and eating disorders as well. Depending on the targeted area in the brain, DBS can either inhibit food intake and body weight or stimulate energy intake and subsequently body weight. The current review focuses on preclinical and clinical evidence of DBS to modulate food intake and body weight and highlight the different brain areas targeted, stimulation protocols applied and downstream signaling modulated. Lastly, this review will also critically discuss potential safety issues and gaps in knowledge to promote further studies.
Collapse
Affiliation(s)
- Philip Prinz
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Chen F, He Q, Han Y, Zhang Y, Gao X. Increased BOLD Signals in dlPFC Is Associated With Stronger Self-Control in Food-Related Decision-Making. Front Psychiatry 2018; 9:689. [PMID: 30618869 PMCID: PMC6306453 DOI: 10.3389/fpsyt.2018.00689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022] Open
Abstract
Self-control is the ability to comply with a request, to postpone acting upon a desire object or goal, and to generate socially approved behavior in the absence of external monitors. Overeating is actually the failure in self-control while feeding. However, little is known about the brain function that allows individuals to consciously control their behavior in the context of food choice. To address this issue, we used functional MRI to measure brain activity among undergraduate young females. Forty-one undergraduate female students participated in the current study. Subjects underwent the food rating task, during which they rated each food item according to their subjective perception of its taste (from Dislike it very much to Like it very much), its long term effect on health (from very unhealthy to very healthy) and decision strength to eat it (from Strong no to Strong yes). Behavioral results indicate the positive correlation between taste rating and its corresponding decision strength to eat, no matter the food is high caloric or low. Moreover, health ratings of high caloric food was negatively correlated with DEBQ-emotional eating, and taste ratings of high caloric food was positively correlated with DEBQ-external eating. Whole brain analysis of fMRI data indicates that BOLD responses in dlPFC were positively correlated with successful self-control; BOLD responses in midcingulate cortex were positively correlated with failed self-control. This study provided direct evidence that dlPFC was involved in self-control in food-related choice.
Collapse
Affiliation(s)
- Fuguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Han
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
| | - Yunfan Zhang
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China.,Faculty of Psychology, Southwest University, Chongqing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
13
|
Abstract
Due to the biological importance of sodium and its relative scarcity within many natural environments, 'salt appetite' has evolved whereby dietary salt is highly sought after and palatable when tasted. In addition to peripheral responses, salt depletion is detected within the brain via circumventricular organs and 11β-hydroxysteroid dehydrogenase type 2 (HSD2) neurons to increase salt appetite. Salt appetite is comprised of two main components. One component is the incentive salience or motivation for salt (i.e. how much salt is 'wanted'). Incentive salience is dynamic and largely depends on internal homeostatic conditions in combination with the detection of relevant cues. It involves the mesolimbic system and structures such as the central amygdala, and opioid signalling within these regions can increase salt intake in rodents. A second key feature is the hedonic palatability of salt (i.e. how much it is 'liked') when it is tasted. After detection on the tongue, gustatory information passes through the brainstem nucleus of the solitary tract and thalamus, before being consciously detected within the gustatory cerebral cortex. The positive or negative hedonic value of this stimulus is also dynamic, and is encoded by a network including the nucleus accumbens, ventral pallidum, and lateral parabrachial nucleus. Opioid signalling within these areas can alter salt intake, and 'liking'. The overconsumption of dietary salt likely contributes to hypertension and associated diseases, and hence further characterising the role played by opioid signalling has important implications for human health.
Collapse
Affiliation(s)
- Craig M Smith
- Faculty of Health, The School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia. .,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
14
|
Dess NK, Dobson K, Roberts BT, Chapman CD. Sweetener Intake by Rats Selectively Bred for Differential Saccharin Intake: Sucralose, Stevia, and Acesulfame Potassium. Chem Senses 2017; 42:381-392. [PMID: 28334357 DOI: 10.1093/chemse/bjx017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Behavioral responses to sweeteners have been used to study the evolution, mechanisms, and functions of taste. Occidental low and high saccharin consuming rats (respectively, LoS and HiS) have been selectively outbred on the basis of saccharin intake and are a valuable tool for studying variation among individuals in sweetener intake and its correlates. Relative to HiS rats, LoS rats consume smaller amounts of all nutritive and nonnutritive sweeteners tested to date, except aspartame. The lines also differ in intake of the commercial product Splenda; the roles of sucralose and saccharides in the difference are unclear. The present study extends prior work by examining intake of custom mixtures of sucralose, maltodextrin, and sugars and Splenda by LoS and HiS rats (Experiment 1A-1D), stevia and a constituent compound (rebaudioside A; Experiment 2A-2E), and acesulfame potassium tested at several concentrations or with 4 other sweeteners at one concentration each (Experiment 3A-3B). Results indicate that aversive side tastes limit intake of Splenda, stevia, and acesulfame potassium, more so among LoS rats than among HiS rats. In addition, regression analyses involving 5 sweeteners support the idea that both sweetness and bitterness are needed to account for intake of nonnutritive sweeteners, more so among LoS rats. These findings contribute to well developed and emerging literatures on sweetness and domain-general processes related to gustation.
Collapse
Affiliation(s)
- Nancy K Dess
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Kiana Dobson
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Brandon T Roberts
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Clinton D Chapman
- Department of Psychology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| |
Collapse
|
15
|
Barna J, Renner E, Arszovszki A, Cservenák M, Kovács Z, Palkovits M, Dobolyi A. Suckling induced activation pattern in the brain of rat pups. Nutr Neurosci 2017; 21:317-327. [PMID: 28185482 DOI: 10.1080/1028415x.2017.1286446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The aim of the study was to understand the effects of suckling on the brain of the pups by mapping their brain activation pattern in response to suckling. METHODS The c-fos method was applied to identify activated neurons. Fasted rat pups were returned to their mothers for suckling and sacrificed 2 hours later for Fos immunohistochemistry. Double labeling was also performed to characterize some of the activated neurons. For comparison, another group of fasted pups were given dry food before Fos mapping. RESULTS After suckling, we found an increase in the number of Fos-immunoreactive neurons in the insular and somatosensory cortices, central amygdaloid nucleus (CAm), paraventricular (PVN) and supraoptic hypothalamic nuclei, lateral parabrachial nucleus (LPB), nucleus of the solitary tract (NTS), and the area postrema. Double labeling experiments demonstrated the activation of calcitonin gene-related peptide-ir (CGRP-ir) neurons in the LPB, corticotropin-releasing hormone-ir (CRH-ir) but not oxytocin-ir neurons in the PVN, and noradrenergic neurons in the NTS. In the CAm, Fos-ir neurons did not contain CRH but were apposed to CGRP-ir fiber terminals. Refeeding with dry food-induced Fos activation in all brain areas activated by suckling. The degree of activation was higher following dry food consumption than suckling in the insular cortex, and lower in the supraoptic nucleus and the NTS. Furthermore, the accumbens, arcuate, and dorsomedial hypothalamic nuclei, and the lateral hypothalamic area, which were not activated by suckling, showed activation by dry food. DISCUSSION Neurons in a number of brain areas are activated during suckling, and may participate in the signaling of satiety, taste perception, reward, food, and salt balance regulation.
Collapse
Affiliation(s)
- János Barna
- a Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology , Semmelweis University , Budapest , Hungary
| | - Eva Renner
- b MTA-SOTE NAP_A Human Brain Tissue Bank and Laboratory, Semmelweis University and the Hungarian Academy of Sciences , Budapest , Hungary
| | - Antónia Arszovszki
- c MTA-ELTE NAP_B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology , Eötvös Loránd University and the Hungarian Academy of Sciences , Budapest , Hungary
| | - Melinda Cservenák
- a Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology , Semmelweis University , Budapest , Hungary.,c MTA-ELTE NAP_B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology , Eötvös Loránd University and the Hungarian Academy of Sciences , Budapest , Hungary
| | - Zsolt Kovács
- d Department of Zoology , University of West Hungary, Savaria Campus , Szombathely , Hungary
| | - Miklós Palkovits
- b MTA-SOTE NAP_A Human Brain Tissue Bank and Laboratory, Semmelweis University and the Hungarian Academy of Sciences , Budapest , Hungary
| | - Arpád Dobolyi
- a Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology , Semmelweis University , Budapest , Hungary.,c MTA-ELTE NAP_B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology , Eötvös Loránd University and the Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|