1
|
Beane CR, Lewis DG, Bruns Vi N, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. Neuropharmacology 2024; 255:110019. [PMID: 38810926 DOI: 10.1016/j.neuropharm.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.
Collapse
Affiliation(s)
- Cambria R Beane
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Delainey G Lewis
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Nicolaus Bruns Vi
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Kat L Pikus
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Mary H Durfee
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Roman A Zegarelli
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Thomas W Perry
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Oscar Sandoval
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
2
|
Chen J, Liu Y, Su M, Sun Y, Liu C, Sun S, Wang T, Tang C. The Aggregation of α-Synuclein in the Dorsomedial Striatum Significantly Impairs Cognitive Flexibility in Parkinson's Disease Mice. Biomedicines 2024; 12:1634. [PMID: 39200099 PMCID: PMC11351470 DOI: 10.3390/biomedicines12081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
This study focused on α-synuclein (α-syn) aggregation in the dorsomedial striatum (DMS) so as to investigate its role in the cognitive flexibility of Parkinson's disease (PD). Here, we investigated the cognitive flexibility by assessing reversal learning abilities in MPTP-induced subacute PD model mice and in C57BL/6J mice with α-syn aggregation in the DMS induced by adenovirus (AAV-SNCA) injection, followed by an analysis of the target protein's expression and distribution. PD mice exhibited impairments in reversal learning, positively correlated with the expression of phosphorylated α-syn in the DMS. Furthermore, the mice in the AAV-SNCA group exhibited reversal learning deficits and a reduction in acetylcholine levels, accompanied by protein alterations within the DMS. Notably, the administration of a muscarinic receptor 1 (M1R) agonist was able to alleviate the aforementioned phenomenon. These findings suggest that the impaired cognitive flexibility in PD may be attributed to the diminished activation of acetylcholine to M1R caused by α-syn aggregation.
Collapse
Affiliation(s)
- Jing Chen
- School of Basic Medical Science, Xuzhou Medical University, Xuzhou 221004, China
| | - Yifang Liu
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingyu Su
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yaoyu Sun
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chenkai Liu
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Sihan Sun
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ting Wang
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Chuanxi Tang
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
- The Research and Engineering Center of Xuzhou Neurodegenerative Disease Diagnosis and Treatment Biologics, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
3
|
Beane CR, Lewis DG, Bruns NK, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566881. [PMID: 38014065 PMCID: PMC10680803 DOI: 10.1101/2023.11.13.566881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Heavy alcohol use and binge drinking are important contributors to alcohol use disorder (AUD). The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol and nicotine consumption. In Experiment 1, binge-like and quinine-resistant drinking was tested using 15% ethanol (EtOH) in a two-bottle, limited-access Drinking in the Dark paradigm. Experiment 2 involved a six-week intermittent access paradigm in which mice received 20% EtOH, nicotine, and then a combination of the two drugs. Experiment 3 assessed locomotor activity, sucrose preference, and quinine sensitivity. Deleting MORs in cholinergic cells did not alter consumption of EtOH in Experiment 1 or 2. In Experiment 1, the MOR deletion resulted in greater consumption of quinine-adulterated EtOH in male Cre+ mice (vs. Cre-). In Experiment 2, Cre+ mice demonstrated a significantly lower preference for nicotine but did not differ from Cre- mice in nicotine or nicotine + EtOH consumption. Overall fluid consumption was also heightened in the Cre+ mice. In Experiment 3, Cre+ females were found to have greater locomotor activity and preference for sucrose vs. Cre- mice. These data suggest that cholinergic MORs are not required for EtOH, drinking behaviors but may contribute to aversion resistant EtOH drinking in a sex-dependent manner.
Collapse
|
4
|
Lozovaya N, Eftekhari S, Hammond C. The early excitatory action of striatal cholinergic-GABAergic microcircuits conditions the subsequent GABA inhibitory shift. Commun Biol 2023; 6:723. [PMID: 37452171 PMCID: PMC10349145 DOI: 10.1038/s42003-023-05068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Cholinergic interneurons of the striatum play a role in action selection and associative learning by activating local GABAergic inhibitory microcircuits. We investigated whether cholinergic-GABAergic microcircuits function differently and fulfill a different role during early postnatal development, when GABAA actions are not inhibitory and mice pups do not walk. We focused our study mainly on dual cholinergic/GABAergic interneurons (CGINs). We report that morphological and intrinsic electrophysiological properties of CGINs rapidly develop during the first post-natal week. At this stage, CGINs are excited by the activation of GABAA receptors or GABAergic synaptic inputs, respond to cortical stimulation by a long excitation and are linked by polysynaptic excitations. All these excitations are replaced by inhibitions at P12-P15. Early chronic treatment with the NKCC1 antagonist bumetanide to evoke premature GABAergic inhibitions from P4 to P8, prevented the GABA polarity shift and corticostriatal pause response at control postnatal days. We propose that early excitatory cholinergic-GABAergic microcircuits are instrumental in the maturation of GABAergic inhibition.
Collapse
|
5
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Martyniuk KM, Torres-Herraez A, Lowes DC, Rubinstein M, Labouesse MA, Kellendonk C. Dopamine D2Rs coordinate cue-evoked changes in striatal acetylcholine levels. eLife 2022; 11:76111. [PMID: 35856493 PMCID: PMC9363114 DOI: 10.7554/elife.76111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the striatum, acetylcholine (ACh) neuron activity is modulated co-incident with dopamine (DA) release in response to unpredicted rewards and reward predicting cues and both neuromodulators are thought to regulate each other. While this co-regulation has been studied using stimulation studies, the existence of this mutual regulation in vivo during natural behavior is still largely unexplored. One long-standing controversy has been whether striatal DA is responsible for the induction of the cholinergic pause or whether D2R modulate a pause that is induced by other mechanisms. Here, we used genetically encoded sensors in combination with pharmacological and genetic inactivation of D2Rs from cholinergic interneurons (CINs) to simultaneously measure ACh and DA levels after CIN D2R inactivation in mice. We found that CIN D2Rs are not necessary for the initiation of cue induced decrease in ACh levels. Rather, they prolong the duration of the decrease and inhibit ACh rebound levels. Notably, the change in task evoked ACh levels is not associated with altered DA levels. Moreover, D2R inactivation strongly decreased the temporal correlation between DA and ACh signals not only at cue presentation but also during the intertrial interval pointing to a general mechanism by which D2Rs coordinate both signals. At the behavioral level D2R antagonism increased the latency to lever press, which was not observed in CIN-selective D2R knock out mice. Press latency correlated with the cue evoked decrease in ACh levels and artificial inhibition of CINs revealed that longer inhibition shortens the latency to press compared to shorter inhibition. This supports a role of the ACh signal and it's regulation by D2Rs in the motivation to initiate actions.
Collapse
Affiliation(s)
- Kelly M Martyniuk
- Department of Neuroscience, University of California, San Diego, La Jolla, United States
| | | | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Kato S, Nishizawa K, Kobayashi K. Thalamostriatal System Controls the Acquisition, Performance, and Flexibility of Learning Behavior. Front Syst Neurosci 2021; 15:729389. [PMID: 34733142 PMCID: PMC8558393 DOI: 10.3389/fnsys.2021.729389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
The dorsal striatum (DS) is a key structure of the basal ganglia circuitry, which regulates various types of learning processes and flexible switching of behavior. Intralaminar thalamic nuclei (ILNs) provide the main source of thalamostriatal inputs to the DS and constitute multiple nuclear groups, each of which innervates specific subdivisions of the striatum. Although the anatomical and electrophysiological properties of thalamostriatal neurons have been previously characterized, the behavioral and physiological functions of these neurons remain unclarified. Two representative thalamostriatal cell groups in the parafascicular nucleus (PF) and the central lateral nucleus (CL) are located in the caudal and rostral regions of the ILNs in rodents. Recently, the behavioral roles of these thalamostriatal cell groups have been investigated by the use of genetic and pharmacological manipulation techniques. In the current review, we summarize behavioral studies on thalamostriatal neurons, showing the key roles of these neurons in different learning processes, such as the acquisition, performance, and flexibility of behavior.
Collapse
Affiliation(s)
- Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
8
|
Er81 Transcription Factor Fine-Tunes Striatal Cholinergic Interneuron Activity and Drives Habit Formation. J Neurosci 2021; 41:4392-4409. [PMID: 33849945 DOI: 10.1523/jneurosci.0967-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms tuning cholinergic interneuron (CIN) activity, although crucial for striatal function and behavior, remain largely unexplored. Previous studies report that the Etv1/Er81 transcription factor is vital for regulating neuronal maturation and activity. While Er81 is known to be expressed in the striatum during development, its specific role in defining CIN properties and the resulting consequences on striatal function is unknown. We report here that Er81 is expressed in CINs and its specific ablation leads to prominent changes in their molecular, morphologic, and electrophysiological features. In particular, the lack of Er81 amplifies intrinsic delayed-rectifier and hyperpolarization-activated currents, which subsequently alters the tonic and phasic activity of CINs. We further reveal that Er81 expression is required for normal CIN pause and time-locked responses to sensorimotor inputs in awake mice. Overall, this study uncovers a new cell type-specific control of CIN function in the striatum which drives habit formation in adult male mice.SIGNIFICANCE STATEMENT Although previous studies have shown that cholinergic interneurons drive striatal activity and habit formation, the underlying molecular mechanisms controlling their function are unknown. Here we reveal that key cholinergic interneuron physiological properties are controlled by Er81, a transcription factor regulating neuronal activity and development in a cell-specific manner. Moreover, our findings uncover a link between the Er81-dependent molecular control of cholinergic interneuron function and habit formation in mice. These insights will contribute to the future enhancement of our understanding of disorders that involve behavioral inflexibility, such as autism and addiction.
Collapse
|
9
|
Assous M. Striatal cholinergic transmission. Focus on nicotinic receptors' influence in striatal circuits. Eur J Neurosci 2021; 53:2421-2442. [PMID: 33529401 PMCID: PMC8161166 DOI: 10.1111/ejn.15135] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
The critical role of acetylcholine (ACh) in the basal ganglia is evident from the effect of cholinergic agents in patients suffering from several related neurological disorders, such as Parkinson's disease, Tourette syndrome, or dystonia. The striatum possesses the highest density of ACh markers in the basal ganglia underlying the importance of ACh in this structure. Striatal cholinergic interneurons (CINs) are responsible for the bulk of striatal ACh, although extrinsic cholinergic afferents from brainstem structures may also play a role. CINs are tonically active, and synchronized pause in their activity occurs following the presentation of salient stimuli during behavioral conditioning. However, the synaptic mechanisms involved are not fully understood in this physiological response. ACh modulates striatal circuits by acting on muscarinic and nicotinic receptors existing in several combinations both presynaptically and postsynaptically. While the effects of ACh in the striatum through muscarinic receptors have received particular attention, nicotinic receptors function has been less studied. Here, after briefly reviewing relevant results regarding muscarinic receptors expression and function, I will focus on striatal nicotinic receptor expressed presynaptically on glutamatergic and dopaminergic afferents and postsynaptically on diverse striatal interneurons populations. I will also review recent evidence suggesting the involvement of different GABAergic sources in two distinct nicotinic-receptor-mediated striatal circuits: the disynaptic inhibition of striatal projection neurons and the recurrent inhibition among CINs. A better understanding of striatal nicotinic receptors expression and function may help to develop targeted pharmacological interventions to treat brain disorders such as Parkinson's disease, Tourette syndrome, dystonia, or nicotine addiction.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
10
|
Ashkenazi SL, Polis B, David O, Morris G. Striatal cholinergic interneurons exert inhibition on competing default behaviours controlled by the nucleus accumbens and dorsolateral striatum. Eur J Neurosci 2020; 53:2078-2089. [DOI: 10.1111/ejn.14873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Sivan Lian Ashkenazi
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- Department of Neuroscience Rappaport Faculty of Medicine and Research Institute Technion ‐ Israel Institute of Technology Haifa Israel
| | - Baruh Polis
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- The Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
| | - Orit David
- Sagol Department of Neurobiology University of Haifa Haifa Israel
| | - Genela Morris
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- Department of Neuroscience Rappaport Faculty of Medicine and Research Institute Technion ‐ Israel Institute of Technology Haifa Israel
| |
Collapse
|
11
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|
12
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Bell T, Lindner M, Langdon A, Mullins PG, Christakou A. Regional Striatal Cholinergic Involvement in Human Behavioral Flexibility. J Neurosci 2019; 39:5740-5749. [PMID: 31109959 PMCID: PMC6636079 DOI: 10.1523/jneurosci.2110-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Animal studies have shown that the striatal cholinergic system plays a role in behavioral flexibility but, until recently, this system could not be studied in humans due to a lack of appropriate noninvasive techniques. Using proton magnetic resonance spectroscopy, we recently showed that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal learning (a measure of behavioral flexibility) in humans. The aim of the present study was to examine whether regional average striatal choline was associated with reversal learning. A total of 22 participants (mean age = 25.2 years, range = 18-32 years, 13 female) reached learning criterion in a probabilistic learning task with a reversal component. We measured choline at rest in both the dorsal and ventral striatum using magnetic resonance spectroscopy. Task performance was described using a simple reinforcement learning model that dissociates the contributions of positive and negative prediction errors to learning. Average levels of choline in the dorsal striatum were associated with performance during reversal, but not during initial learning. Specifically, lower levels of choline in the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline levels explained interindividual variance in perseveration over and above that explained by learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic system plays an important role in behavioral flexibility, in line with evidence from the animal literature and our previous work in humans. Additionally, this work provides further support for the idea of measuring choline with magnetic resonance spectroscopy as a noninvasive way of studying human cholinergic neurochemistry.SIGNIFICANCE STATEMENT Behavioral flexibility is a crucial component of adaptation and survival. Evidence from the animal literature shows that the striatal cholinergic system is fundamental to reversal learning, a key paradigm for studying behavioral flexibility, but this system remains understudied in humans. Using proton magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are associated with performance specifically during reversal learning. These novel findings help to bridge the gap between animal and human studies by demonstrating the importance of cholinergic function in the dorsal striatum in human behavioral flexibility. Importantly, the methods described here cannot only be applied to furthering our understanding of healthy human neurochemistry, but also to extending our understanding of cholinergic disorders.
Collapse
Affiliation(s)
- Tiffany Bell
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Michael Lindner
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Angela Langdon
- Princeton Neuroscience Institute, Princeton University, New Jersey 08544, and
| | | | - Anastasia Christakou
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom,
| |
Collapse
|
14
|
Striatal Cholinergic Interneurons Are a Novel Target of Corticotropin Releasing Factor. J Neurosci 2019; 39:5647-5661. [PMID: 31109960 DOI: 10.1523/jneurosci.0479-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022] Open
Abstract
Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.
Collapse
|
15
|
Basal ganglia mechanisms in action selection, plasticity, and dystonia. Eur J Paediatr Neurol 2018; 22:225-229. [PMID: 29396175 PMCID: PMC5815934 DOI: 10.1016/j.ejpn.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Basal ganglia circuits are organized to selected desired actions and to inhibit potentially competing unwanted actions. This is accomplished through a complex circuitry that is modified through development and learning. Mechanisms of neural plasticity underlying these modifications are increasingly understood, but new mechanisms continue to be discovered. Dystonia, a movement disorder characterized by involuntary muscle contractions that cause abnormal postures and movements. Emerging evidence points to important links between mechanisms of plasticity and the manifestations of dystonia. Investigation of these mechanisms has improved understanding of the action of currently used medication and is informing the development of new treatments.
Collapse
|