1
|
Williams D. Why so slow? Models of parkinsonian bradykinesia. Nat Rev Neurosci 2024; 25:573-586. [PMID: 38937655 DOI: 10.1038/s41583-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions.
Collapse
Affiliation(s)
- David Williams
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
2
|
Rahamim N, Slovik M, Mevorach T, Linkovski O, Bergman H, Rosin B, Eitan R. Tuned to Tremor: Increased Sensitivity of Cortico-Basal Ganglia Neurons to Tremor Frequency in the MPTP Nonhuman Primate Model of Parkinson's Disease. J Neurosci 2023; 43:7712-7722. [PMID: 37833067 PMCID: PMC10634551 DOI: 10.1523/jneurosci.0529-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Rest tremor is one of the most prominent clinical features of Parkinson's disease (PD). Here, we hypothesized that cortico-basal ganglia neurons tend to fire in a pattern that matches PD tremor frequency, suggesting a resonance phenomenon. We recorded spiking activity in the primary motor cortex (M1) and globus pallidus external segment of 2 female nonhuman primates, before and after parkinsonian state induction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The arm of nonhuman primates was passively rotated at seven different frequencies surrounding and overlapping PD tremor frequency. We found entrainment of the spiking activity to arm rotation and a significant sharpening of the tuning curves in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine state, with a peak response at frequencies that matched the frequency of PD tremor. These results reveal increased sensitivity of the cortico-basal ganglia network to tremor frequency and could indicate that this network acts not only as a tremor switch but is involved in setting its frequency.SIGNIFICANCE STATEMENT Tremor is a prominent clinical feature of Parkinson's disease; however, its underlying pathophysiology is still poorly understood. Using electrophysiological recordings of single cortico-basal ganglia neurons before and after the induction of a parkinsonian state, and in response to passive arm rotation, this study reports increased sensitivity to tremor frequency in Parkinson's disease. We found sharpening of the population tuning to the midrange of the tested frequencies (1-13.3 Hz) in the healthy state that further increased in the parkinsonian state. These results hint at the increased frequency-tuned sensitivity of cortico-basal ganglia neurons and suggest that they tend to resonate with the tremor.
Collapse
Affiliation(s)
- Noa Rahamim
- Edmond and Lily Safra Center for Brain Science, Hebrew University, Jerusalem, 91120, Israel
| | - Maya Slovik
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Tomer Mevorach
- Department of Psychological Medicine, Schneider Children's Medical Center in Israel, Petah Tikva, 4920235, Israel
- Psychiatric Division, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv, 6423906, Israel
| | - Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat Gan, 590002, Israel
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 590002, Israel
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Science, Hebrew University, Jerusalem, 91120, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Boris Rosin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Renana Eitan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
- Psychiatric Division, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv, 6423906, Israel
| |
Collapse
|
3
|
Dopamine depletion can be predicted by the aperiodic component of subthalamic local field potentials. Neurobiol Dis 2022; 168:105692. [DOI: 10.1016/j.nbd.2022.105692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
|
4
|
Iskhakova L, Rappel P, Deffains M, Fonar G, Marmor O, Paz R, Israel Z, Eitan R, Bergman H. Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations. Nat Commun 2021; 12:7026. [PMID: 34857767 PMCID: PMC8640051 DOI: 10.1038/s41467-021-27375-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Βeta oscillatory activity (human: 13-35 Hz; primate: 8-24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson's disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson's following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks.
Collapse
Affiliation(s)
- L Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - P Rappel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Deffains
- University of Bordeaux, UMR 5293, IMN, Bordeaux, France
- CNRS, UMR 5293, IMN, Bordeaux, France
| | - G Fonar
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - O Marmor
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Z Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - R Eitan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Jerusalem Mental Health Center, Hebrew University Medical School, Jerusalem, Israel
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - H Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
5
|
Abstract
BACKGROUND Microelectrode recordings (MERs) are used during deep brain stimulation surgery (DBS) to optimize patient outcomes and provide a unique method of collecting data regarding neurological conditions. However, MERs can be affected by anesthetics such as dexmedetomidine. Little is known about the effects of dexmedetomidine (DEX) on the globus pallidus interna (GPi), a common target for DBS. The primary aim of this study is to investigate the hypothesis that DEX is associated with alterations in GPi MERs. METHODS We conducted a retrospective analysis comparing MERs from patients with Parkinson's disease (PD) and dystonia who underwent insertion of DBS of the GPi under DEX sedation with those who went through the same procedure without DEX (No DEX). RESULTS Firing rates for GPi neurons in the DEX group were lower (57.44 ± 2.04; mean ± SEM, n = 163 cells) than the No DEX group (69.53 ± 2.06, n = 112 cells, P < 0.0001). Overall, DEX was associated with a greater proportion of GPi cells classified as firing in bursty pattern compared to our No DEX group. (29.41%, n = 153 vs 14.81%, n = 108, P = 0.008). This effect was present for both PD and dystonia patients who underwent the procedure. High doses of DEX were associated with lower firing rates than low doses. CONCLUSIONS Our results suggest that DEX is associated with a decrease in GPi firing rates and are associated with an increase in burstiness. Furthermore, these effects are similar between dystonia and PD patients. Lastly, the effects of DEX may differ between high doses and low doses.
Collapse
|
6
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
7
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|