1
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
2
|
Mariscal P, Bravo L, Llorca-Torralba M, Razquin J, Miguelez C, Suárez-Pereira I, Berrocoso E. Sexual differences in locus coeruleus neurons and related behavior in C57BL/6J mice. Biol Sex Differ 2023; 14:64. [PMID: 37770907 PMCID: PMC10540344 DOI: 10.1186/s13293-023-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND In addition to social and cultural factors, sex differences in the central nervous system have a critical influence on behavior, although the neurobiology underlying these differences remains unclear. Interestingly, the Locus Coeruleus (LC), a noradrenergic nucleus that exhibits sexual dimorphism, integrates signals that are related to diverse activities, including emotions, cognition and pain. Therefore, we set-out to evaluate sex differences in behaviors related to LC nucleus, and subsequently, to assess the sex differences in LC morphology and function. METHODS Female and male C57BL/6J mice were studied to explore the role of the LC in anxiety, depressive-like behavior, well-being, pain, and learning and memory. We also explored the number of noradrenergic LC cells, their somatodendritic volume, as well as the electrophysiological properties of LC neurons in each sex. RESULTS While both male and female mice displayed similar depressive-like behavior, female mice exhibited more anxiety-related behaviors. Interestingly, females outperformed males in memory tasks that involved distinguishing objects with small differences and they also showed greater thermal pain sensitivity. Immunohistological analysis revealed that females had fewer noradrenergic cells yet they showed a larger dendritic volume than males. Patch clamp electrophysiology studies demonstrated that LC neurons in female mice had a lower capacitance and that they were more excitable than male LC neurons, albeit with similar action potential properties. CONCLUSIONS Overall, this study provides new insights into the sex differences related to LC nucleus and associated behaviors, which may explain the heightened emotional arousal response observed in females.
Collapse
Affiliation(s)
- Patricia Mariscal
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| | - Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Cell Biology & Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
3
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
4
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Ney LJ, Crombie KM, Mayo LM, Felmingham KL, Bowser T, Matthews A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci Biobehav Rev 2021; 132:76-91. [PMID: 34838529 DOI: 10.1016/j.neubiorev.2021.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system is known to be involved in mechanisms relevant to PTSD aetiology and maintenance, though this understanding is mostly based on animal models of the disorder. Here we review how human paradigms can successfully translate animal findings to human subjects, with the view that substantially increased insight into the effect of endocannabinoid signalling on stress responding, emotional and intrusive memories, and fear extinction can be gained using modern paradigms and methods for assessing the state of the endocannabinoid system in PTSD.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychological Sciences, University of Tasmania, Australia; School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, United States
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Sweden
| | - Kim L Felmingham
- Department of Psychological Sciences, University of Melbourne, Australia
| | | | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| |
Collapse
|
6
|
Ney L, Stone C, Nichols D, Felmingham K, Bruno R, Matthews A. Endocannabinoid reactivity to acute stress: Investigation of the relationship between salivary and plasma levels. Biol Psychol 2021; 159:108022. [PMID: 33460783 DOI: 10.1016/j.biopsycho.2021.108022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The endogenous cannabinoid (eCB) system has been shown in animal models to regulate the initiation and termination of central nervous responses to stress. In human studies, the role of peripherally measured eCBs is much less clear and the effect in salivary eCBs has not been studied. In this study, we use a novel method to quantify cortisol and eCBs arachidonoyl ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG) in human saliva, as well as in plasma samples. Forty-five females and 32 males completed a mixed physiological/psychosocial stress-induction study where saliva, and blood samples in males, were collected at baseline, immediately following, 30-minutes following, and 45-minutes following stress induction. Cortisol significantly increased after stress, but there were sex differences in the cortisol response to stress, with females having higher cortisol after stress compared to males. There was a significant increase in salivary levels of 2-AG immediately following stress induction, but no effect of AEA. Salivary AEA was higher in males compared to females. Surprisingly, there was no effect of stress on plasma AEA or 2-AG levels in the male cohort, though small effect sizes for 2-AG were observed, which is consistent with most other human literature. This study is the first to show that the eCB system is active in human saliva and is responsive to acute stress, possibly as part of the sympathetic nervous system response.
Collapse
Affiliation(s)
- Luke Ney
- School of Psychology, University of Tasmania, Australia.
| | - Caleb Stone
- School of Psychology, University of Tasmania, Australia
| | - David Nichols
- Organic Mass Spectrometry, University of Tasmania, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | | | | |
Collapse
|
7
|
Modulation of Noradrenergic and Serotonergic Systems by Cannabinoids: Electrophysiological, Neurochemical and Behavioral Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:111-132. [PMID: 33537940 DOI: 10.1007/978-3-030-61663-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The main noradrenergic and serotonergic nuclei in the central nervous system (CNS) are the locus coeruleus (LC) and the dorsal raphe nucleus (DRN). These brain areas, located in the brainstem, play a pivotal role in the control of various functions and behaviors that are altered by cannabinoids (i.e., pain, arousal, mood, anxiety, or sleep-wake cycle). Anatomical, neurochemical, and functional data suggest that cannabinoids regulate both central noradrenergic and serotonergic neurotransmission. Thus, strong evidence has shown that the firing activity of LC and DRN monoamine neurons or the synthesis/release of noradrenaline (NA) and serotonin (5-HT) in the projection areas are all affected by cannabinoid administration. Herein, we propose that interaction between the endocannabinoid system and the noradrenergic-serotonergic systems could account for some of the anxiolytic, antidepressant, and antinociceptive effects of cannabinoids or the disruption of attention/sleep induced by these drugs.
Collapse
|
8
|
Gargano A, Beins E, Zimmer A, Bilkei-Gorzo A. Lack of Cannabinoid Receptor Type-1 Leads to Enhanced Age-Related Neuronal Loss in the Locus Coeruleus. Int J Mol Sci 2020; 22:ijms22010005. [PMID: 33374940 PMCID: PMC7792602 DOI: 10.3390/ijms22010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
Our laboratory and others have previously shown that cannabinoid receptor type-1 (CB1r) activity is neuroprotective and a modulator of brain ageing; a genetic disruption of CB1r signaling accelerates brain ageing, whereas the pharmacological stimulation of CB1r activity had the opposite effect. In this study, we have investigated if the lack of CB1r affects noradrenergic neurons in the locus coeruleus (LC), which are vulnerable to age-related changes; their numbers are reduced in patients with neurodegenerative diseases and probably also in healthy aged individuals. Thus, we compared LC neuronal numbers between cannabinoid 1 receptor knockout (Cnr1−/−) mice and their wild-type littermates. Our results reveal that old Cnr1−/− mice have less noradrenergic neurons compared to their age-matched wild-type controls. This result was also confirmed by the analysis of the density of noradrenergic terminals which proved that Cnr1−/− mice had less compared to the wild-type controls. Additionally, we assessed pro-inflammatory glial activity in the LC. Although the density of microglia in Cnr1−/− mice was enhanced, they did not show enhanced inflammatory profile. We hypothesize that CB1r activity is necessary for the protection of noradrenergic neurons, but its anti-inflammatory effect probably only plays a minor role in it.
Collapse
Affiliation(s)
- Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
9
|
Sex differences in the interactive effects of early life stress and the endocannabinoid system. Neurotoxicol Teratol 2020; 80:106893. [PMID: 32437941 DOI: 10.1016/j.ntt.2020.106893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Sex differences in both the endocannabinoid system and stress responses have been established for decades. While there is ample evidence that the sexes respond differently to stress and that the endocannabinoid system is involved in this response, what is less clear is whether the endocannabinoid system mediates this response to stress differently in both sexes. Also, do the sexes respond similarly to exogenous cannabinoids (CBs) following stress? Can the administration of exogenous CBs normalize the effects of stress and if so, does this happen similarly in male and female subjects? This review will attempt to delineate the stress induced neurochemical alterations in the endocannabinoid system and the resulting behavioral changes across periods of development: prenatal, early neonatal or adolescent in males and females. Within this frame work, we will then examine the neurochemical and behavioral effects of exogenous CBs and illustrate that the response to CBs is determined by the stress history of the animal. The theoretical framework for this endeavor relates to the established effects of adverse childhood experiences (ACE) in increasing substance abuse, depression and anxiety and the possibility that individuals with high ACE scores may consume cannabinoids to "self-medicate". Overall, we see that while there are instances where exogenous cannabinoids "normalize" the adverse effects produced by early stress, this normalization does not occur in all animal models with any sort of consistency. The most compelling report where CB administration appears to normalize behaviors altered by early stress, shows minimal differences between the sexes (Alteba et al., 2016). This is in stark contrast to the majority of studies on early stress and the endocannabinoid system where both sexes are included and show quite divergent, in fact opposite, effects in males and females. Frequently there is a disconnect between neurochemical changes and behavioral changes and often, exogenous CBs have greater effects in stressed animals compared to non-stressed controls. This report as well as others reviewed here do support the concept that the effects of exogenous CBs are different in individuals experiencing early stress and that these differences are not equal in males and females. However, due to the wide variety of stressors used and the range of ages when the stress is applied, additional careful studies are warranted to fully understand the interactive effects of stress and the endocannabinoid system in males and females. In general, the findings do not support the statement that CB self-administration is an effective treatment for the adverse behavioral effects of early maltreatment in either males or females. Certainly this review should draw the attention of clinicians working with children, adolescents and adults exposed to early trauma and provide some perspective on the dysregulation of the endocannabinoid system in the response to trauma, the complex actions of exogenous CBs based on stress history and the unique effects of these factors in men and women.
Collapse
|
10
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 2019; 1719:89-103. [DOI: 10.1016/j.brainres.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
12
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: Where to next? Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:124-140. [PMID: 30946942 DOI: 10.1016/j.pnpbp.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | | | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
13
|
Urquhart MA, Ross JA, Reyes BAS, Nitikman M, Thomas SA, Mackie K, Van Bockstaele EJ. Noradrenergic depletion causes sex specific alterations in the endocannabinoid system in the Murine prefrontal cortex. Neurobiol Stress 2019; 10:100164. [PMID: 31193575 PMCID: PMC6535650 DOI: 10.1016/j.ynstr.2019.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 04/06/2019] [Indexed: 01/27/2023] Open
Abstract
Brain endocannabinoids (eCB), acting primarily via the cannabinoid type 1 receptor (CB1r), are involved in the regulation of many physiological processes, including behavioral responses to stress. A significant neural target of eCB action is the stress-responsive norepinephrine (NE) system, whose dysregulation is implicated in myriad psychiatric and neurodegenerative disorders. Using Western blot analysis, the protein expression levels of a key enzyme in the biosynthesis of the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol lipase-α (DGL-α), and two eCB degrading enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) were examined in a mouse model that lacks the NE-synthesizing enzyme, dopamine β-hydroxylase (DβH-knockout, KO) and in rats treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4). In the prefrontal cortex (PFC), DGL-α protein expression was significantly increased in male and female DβH-KO mice (P < 0.05) compared to wild-type (WT) mice. DβH-KO male mice showed significant decreases in FAAH protein expression compared to WT male mice. Consistent with the DβH-KO results, DGL-α protein expression was significantly increased in male DSP-4-treated rats (P < 0.05) when compared to saline-treated controls. MGL and FAAH protein expression levels were significantly increased in male DSP-4 treated rats compared to male saline controls. Finally, we investigated the anatomical distribution of MGL and FAAH in the NE containing axon terminals of the PFC using immunoelectron microscopy. MGL was predominantly within presynaptic terminals while FAAH was localized to postsynaptic sites. These results suggest that the eCB system may be more responsive in males than females under conditions of NE perturbation, thus having potential implications for sex-specific treatment strategies of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- M A Urquhart
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - J A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - M Nitikman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - S A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405-2204, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| |
Collapse
|
14
|
Endocannabinoids, stress signaling, and the locus coeruleus-norepinephrine system. Neurobiol Stress 2019; 11:100176. [PMID: 31236436 PMCID: PMC6582240 DOI: 10.1016/j.ynstr.2019.100176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
The endocannabinoid (eCB) system has been implicated in a variety of physiological functions due to abundant expression of its receptors and endogenous ligands in the central nervous system. Substantial progress has been made in understanding how the eCB system influences the brain norepinephrine (NE) system, an important neurochemical target in the continued development of new therapies for stress-induced psychiatric disorders. We, and others, have characterized the neuroanatomical, biochemical and pharmacological effects of cannabinoid receptor modulation on brain noradrenergic circuitry and defined how molecular elements of the eCB system are positioned to directly impact the locus coeruleus (LC)-prefrontal cortex pathway, a neural circuit well recognized for contributing to symptoms of hyperarousal, a key pathophysiological feature of stress-related disorders. We also described molecular and electrophysiological properties of LC noradrenergic neurons and NE release in the medial prefrontal cortex under conditions of cannabinoid type 1 receptor deletion. Finally, we identified how stress influences cannabinoid modulation of the coeruleo-cortical pathway. A number of significant findings emerged from these studies that will be summarized in the present review and have important implications for clinical studies targeting the eCB system in the treatment of stress-induced psychiatric disorders.
Collapse
|
15
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Commentary on “Sex differences in the effect of cannabinoid type 1 receptor deletion on locus coeruleus-norepinephrine neurons and corticotropin releasing factor-mediated responses”. Eur J Neurosci 2019; 49:1210-1211. [DOI: 10.1111/ejn.14371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Luke John Ney
- School of Psychology; University of Tasmania; Hobart Tasmania Australia
| | - Allison Matthews
- School of Psychology; University of Tasmania; Hobart Tasmania Australia
| | - Raimondo Bruno
- School of Psychology; University of Tasmania; Hobart Tasmania Australia
| | - Kim Louise Felmingham
- School of Psychological Sciences; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|