1
|
Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J, Strasser A, Zanoletti O, Steiner P, Preitner N, Xin L, Astori S, Sandi C. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 2022; 11:77791. [DOI: 10.7554/elife.77791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual’s capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Fiona Hollis
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine
| | - Laura Trovo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - João Rodrigues
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Alina Strasser
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Nicolas Preitner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), EPFL
| | - Simone Astori
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
2
|
Strasser A, Luksys G, Xin L, Pessiglione M, Gruetter R, Sandi C. Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology 2020; 45:2048-2057. [PMID: 32688366 PMCID: PMC7547698 DOI: 10.1038/s41386-020-0760-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement.
Collapse
Affiliation(s)
- Alina Strasser
- grid.5333.60000000121839049Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gediminas Luksys
- Centre for Discovery Brain Sciences (CDBS), University of Edinburgh, Edinburgh, UK. .,ZJU-UoE Institute, Zhejiang University International Campus, Haining, China.
| | - Lijing Xin
- grid.5333.60000000121839049Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mathias Pessiglione
- grid.411439.a0000 0001 2150 9058Motivation, Brain and Behavior Team, Brain and Spine Institute (ICM), Paris, France
| | - Rolf Gruetter
- grid.5333.60000000121839049Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland ,grid.8591.50000 0001 2322 4988Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Trait anxiety on effort allocation to monetary incentives: a behavioral and high-density EEG study. Transl Psychiatry 2019; 9:174. [PMID: 31300637 PMCID: PMC6626005 DOI: 10.1038/s41398-019-0508-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Trait anxiety is an important phenotype in the prediction of stress-induced neuropsychiatric disorders. While the role of trait anxiety in mental effort and cognitive impairment is well documented, much less is known about its influence on motivated behaviors and physical effort. Here, we investigated trait anxiety-related differences in behavioral and neural responses in an effort-related monetary incentive delay task. Participants prompted with different incentive levels could exert handgrip responses to earn monetary rewards while a 256-channel electroencephalography (EEG) was recorded. Participants' performance was linearly dependent on incentive level, with higher stakes prompting better accuracy and higher grip force. Importantly, we found a striking association between trait anxiety and incentive-related grip force; effort exertion was related to incentive level only in high-anxious individuals. In analyses of neural efficiency associated with effort preparation involving Contingent-negative variation (CNV), we found that the CNV amplitude was sensitive to monetary incentive levels. Source imaging analyses of CNV indicated increased activity in the anterior cingulate cortex (ACC) for the highest incentive level. Importantly, we found a significant interaction between trait anxiety and incentive level on CNV modulation at the interval ranging from -2610 to -2510 ms, with greater CNV responses to the lower monetary incentive sizes in high anxiety. Subsequent mediation analyses supported a mediation of the ACC activation on the association between trait anxiety and incentive-selective grip force. Our study reveals a role for ACC in trait anxiety-related differences on incentive processing, when rewards are dependent on effortful performance.
Collapse
|
4
|
Hailwood JM, Gilmour G, Robbins TW, Saksida LM, Bussey TJ, Marston HM, Gastambide F. Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats. Eur J Neurosci 2018; 48:2971-2987. [PMID: 30218588 PMCID: PMC6282581 DOI: 10.1111/ejn.14150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/21/2023]
Abstract
Goal‐directed motivated behaviour is crucial for everyday life. Such behaviour is often measured, in rodents, under a progressive ratio (PR) schedule of reinforcement. Previous studies have identified a few brain structures critical for supporting PR performance. However, the association between neural activity within these regions and individual differences in effort‐related behaviour is not known. Presently, we used constant potential in vivo oxygen amperometry, a surrogate for functional resonance imaging in rodents, to assess changes in tissue oxygen levels within the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) in male Wistar rats performing a PR task. Within both regions, oxygen responses to rewards increased as the effort exerted to obtain the rewards was larger. Furthermore, higher individual breakpoints were associated with greater magnitude NAc oxygen responses. This association could not be explained by temporal confounds and remained significant when controlling for the different number of completed trials. Animals with higher breakpoints also showed greater magnitude NAc oxygen responses to rewards delivered independently of any behaviour. In contrast, OFC oxygen responses were not associated with individual differences in behavioural performance. The present results suggest that greater NAc oxygen responses following rewards, through a process of incentive motivation, may allow organisms to remain on task for longer and to overcome greater effort costs.
Collapse
Affiliation(s)
- Jonathan M Hailwood
- Department of Psychology and Behvaioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Gary Gilmour
- Erl Wood Manor, Eli Lilly & Co Ltd, Windlesham, UK
| | - Trevor W Robbins
- Department of Psychology and Behvaioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Lisa M Saksida
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology and Behvaioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Molecular Medicine Research Group, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,The Brain and Mind Institute, Western University, London, ON, Canada
| | | | | |
Collapse
|