1
|
Priyanka, Qamar SH, Visanji NP. Toward an animal model of Progressive Supranuclear Palsy. Front Neurosci 2024; 18:1433465. [PMID: 39420986 PMCID: PMC11484047 DOI: 10.3389/fnins.2024.1433465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Progressive Supranuclear Palsy (PSP) is a rare and fatal neurodegenerative tauopathy which, with a rapid clinical progression coupled to a strong degree of clinico-pathologic correlation, has been suggested to be a "frontrunner" in translational development for neurodegenerative proteinopathies. Elegant studies in animals have contributed greatly to our understanding of disease pathogenesis in PSP. However, presently no animal model replicates the key anatomical and cytopathologic hallmarks, the spatiotemporal spread of pathology, progressive neurodegeneration, or locomotor and cognitive symptoms that characterize PSP. Current models therefore likely fail to recapitulate the key mechanisms that underly the pathological progression of PSP, impeding their translational value. Here we review what we have learned about PSP from work in animals to date, examine the gaps in modeling the disease and discuss strategies for the development of refined animal models that will improve our understanding of disease pathogenesis and provide a critical platform for the testing of novel therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Priyanka
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Syeda Hania Qamar
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
2
|
Pickford J, Iosif CI, Bashir ZI, Apps R. Inhibiting cholinergic signalling in the cerebellar interpositus nucleus impairs motor behaviour. Eur J Neurosci 2024; 59:2208-2224. [PMID: 37455360 PMCID: PMC7616440 DOI: 10.1111/ejn.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.
Collapse
Affiliation(s)
- Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021; 54:7688-7709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.
Collapse
Affiliation(s)
- Gabriella King
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Kaliana M Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | | | | | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Bayasgalan T, Stupniki S, Kovács A, Csemer A, Szentesi P, Pocsai K, Dionisio L, Spitzmaul G, Pál B. Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit. Front Cell Neurosci 2021; 15:707789. [PMID: 34381336 PMCID: PMC8352570 DOI: 10.3389/fncel.2021.707789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The pedunculopontine nucleus (PPN), a structure known as a cholinergic member of the reticular activating system (RAS), is source and target of cholinergic neuromodulation and contributes to the regulation of the sleep–wakefulness cycle. The M-current is a voltage-gated potassium current modulated mainly by cholinergic signaling. KCNQ subunits ensemble into ion channels responsible for the M-current. In the central nervous system, KCNQ4 expression is restricted to certain brainstem structures such as the RAS nuclei. Here, we investigated the presence and functional significance of KCNQ4 in the PPN by behavioral studies and the gene and protein expressions and slice electrophysiology using a mouse model lacking KCNQ4 expression. We found that this mouse has alterations in the adaptation to changes in light–darkness cycles, representing the potential role of KCNQ4 in the regulation of the sleep–wakefulness cycle. As cholinergic neurons from the PPN participate in the regulation of this cycle, we investigated whether the cholinergic PPN might also possess functional KCNQ4 subunits. Although the M-current is an electrophysiological hallmark of cholinergic neurons, only a subpopulation of them had KCNQ4-dependent M-current. Interestingly, the absence of the KCNQ4 subunit altered the expression patterns of the other KCNQ subunits in the PPN. We also determined that, in wild-type animals, the cholinergic inputs of the PPN modulated the M-current, and these in turn can modulate the level of synchronization between neighboring PPN neurons. Taken together, the KCNQ4 subunit is present in a subpopulation of PPN cholinergic neurons, and it may contribute to the regulation of the sleep–wakefulness cycle.
Collapse
Affiliation(s)
- T Bayasgalan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - S Stupniki
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - A Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - P Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - K Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - L Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - G Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - B Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Höglinger GU, Litvan I, Mendonca N, Wang D, Zheng H, Rendenbach-Mueller B, Lon HK, Jin Z, Fisseha N, Budur K, Gold M, Ryman D, Florian H, Ahmed A, Aiba I, Albanese A, Bertram K, Bordelon Y, Bower J, Brosch J, Claassen D, Colosimo C, Corvol JC, Cudia P, Daniele A, Defebvre L, Driver-Dunckley E, Duquette A, Eleopra R, Eusebio A, Fung V, Geldmacher D, Golbe L, Grandas F, Hall D, Hatano T, Höglinger GU, Honig L, Hui J, Kerwin D, Kikuchi A, Kimber T, Kimura T, Kumar R, Litvan I, Ljubenkov P, Lorenzl S, Ludolph A, Mari Z, McFarland N, Meissner W, Mir Rivera P, Mochizuki H, Morgan J, Munhoz R, Nishikawa N, O`Sullivan J, Oeda T, Oizumi H, Onodera O, Ory-Magne F, Peckham E, Postuma R, Quattrone A, Quinn J, Ruggieri S, Sarna J, Schulz PE, Slevin J, Tagliati M, Wile D, Wszolek Z, Xie T, Zesiewicz T. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol 2021; 20:182-192. [DOI: 10.1016/s1474-4422(20)30489-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
|
6
|
Chambers NE, Coyle M, Sergio J, Lanza K, Saito C, Topping B, Clark SD, Bishop C. Effects of pedunculopontine nucleus cholinergic lesion on gait and dyskinesia in hemiparkinsonian rats. Eur J Neurosci 2021; 53:2835-2847. [PMID: 33426708 DOI: 10.1111/ejn.15106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Pedunculopontine nucleus (PPN) cholinergic neurons are implicated in freezing of gait in Parkinson's disease (PD) and motor stereotypy in normal animals, but the causal role of these neurons on specific gait parameters and treatment-induced dyskinesia remains speculative. Therefore, we examined whether selective cholinergic lesion of the rostral PPN affects PD motor and gait deficits, L-DOPA-induced dyskinesia and motor improvement, and DA-agonist-induced dyskinesia. Sprague-Dawley rats were assigned to one unilaterally lesioned group: Sham lesion, PPN cholinergic lesion with diphtheria urotensin II fusion toxin, medial forebrain bundle dopamine lesion with 6-hydroxydopamine, or dual acetylcholine and dopamine lesion. We used gait analysis and forepaw adjusting steps to examine PD gait and motor deficits. Forepaw adjusting steps were also used to assess motor improvement with L-DOPA treatment. The abnormal involuntary movements scale measured L-DOPA and dopamine D1- and D2-receptor agonist-induced dyskinesia. Lesions, verified via tyrosine hydroxylase and choline acetyltransferase immunohistochemistry reduced an average of 95% of nigral dopamine neurons and 80% of PPN cholinergic neurons, respectively. Rats receiving acetylcholine and dual lesion demonstrated enhanced freezing, and acetylcholine lesioned rats exhibited increased print area and stand index. Dopamine and dual lesion produced similar forepaw adjusting steps task on and off L-DOPA. Relative to DA lesioned rats, dual lesioned rats displayed reduced L-DOPA and DA agonist-induced dyskinesia at specific time points. Our results indicate that PPN cholinergic neurons affect gait parameters related to postural stability. Therefore, therapeutically targeting PPN cholinergic neurons could reduce intractable postural instability in PD without affecting motor benefits or side effects of L-DOPA treatment.
Collapse
Affiliation(s)
- Nicole E Chambers
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Michael Coyle
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Jordan Sergio
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Kathryn Lanza
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Carolyn Saito
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Brent Topping
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher Bishop
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
7
|
Chambers NE, Lanza K, Bishop C. Pedunculopontine Nucleus Degeneration Contributes to Both Motor and Non-Motor Symptoms of Parkinson's Disease. Front Pharmacol 2020; 10:1494. [PMID: 32009944 PMCID: PMC6974690 DOI: 10.3389/fphar.2019.01494] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by hypokinetic motor features; however, patients also display non-motor symptoms like sleep disorders. The standard treatment for PD is dopamine replacement with L-DOPA; however, symptoms including gait deficits and sleep disorders are unresponsive to L-DOPA. Notably, these symptoms have been linked to aberrant activity in the pedunculopontine nucleus (PPN). Of late, clinical trials involving PPN deep brain stimulation (DBS) have been employed to alleviate gait deficits. Although preclinical evidence implicating PPN cholinergic neurons in gait dysfunction was initially promising, DBS trials fell short of expected outcomes. One reason for the failure of DBS may be that the PPN is a heterogenous nucleus that consists of GABAergic, cholinergic, and glutamatergic neurons that project to a diverse array of brain structures. Second, DBS trials may have been unsuccessful because PPN neurons are susceptible to mitochondrial dysfunction, Lewy body pathology, and degeneration in PD. Therefore, pharmaceutical or gene-therapy strategies targeting specific PPN neuronal populations or projections could better alleviate intractable PD symptoms. Unfortunately, how PPN neuronal populations and their respective projections influence PD motor and non-motor symptoms remains enigmatic. Herein, we discuss normal cellular and neuroanatomical features of the PPN, the differential susceptibility of PPN neurons to PD-related insults, and we give an overview of literature suggesting a role for PPN neurons in motor and sleep deficits in PD. Finally, we identify future approaches directed towards the PPN for the treatment of PD motor and sleep symptoms.
Collapse
Affiliation(s)
| | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|