1
|
Boelders SM, De Baene W, Postma E, Gehring K, Ong LL. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024; 22:329-352. [PMID: 38900230 PMCID: PMC11329426 DOI: 10.1007/s12021-024-09671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
Collapse
Affiliation(s)
- S M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - W De Baene
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands
| | - E Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands.
| | - L L Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
2
|
Salvalaggio A, Pini L, Bertoldo A, Corbetta M. Glioblastoma and brain connectivity: the need for a paradigm shift. Lancet Neurol 2024; 23:740-748. [PMID: 38876751 DOI: 10.1016/s1474-4422(24)00160-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 06/16/2024]
Abstract
Despite substantial advances in cancer treatment, for patients with glioblastoma prognosis remains bleak. The emerging field of cancer neuroscience reveals intricate functional interplays between glioblastoma and the cellular architecture of the brain, encompassing neurons, glia, and vessels. New findings underscore the role of structural and functional connections within hierarchical networks, known as the connectome. These connections contribute to the location, spread, and recurrence of a glioblastoma, and a patient's overall survival, revealing a complex interplay between the tumour and the CNS. This mounting evidence prompts a paradigm shift, challenging the perception of glioblastomas as mere foreign bodies within the brain. Instead, these tumours are intricately woven into the structural and functional fabric of the brain. This radical change in thinking holds profound implications for the understanding and treatment of glioblastomas, which could unveil new prognostic factors and surgical strategies and optimise radiotherapy. Additionally, a connectivity approach suggests that non-invasive brain stimulation could disrupt pathological neuron-glioma interactions within specific networks.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy.
| |
Collapse
|
3
|
De Roeck L, Blommaert J, Dupont P, Sunaert S, Sleurs C, Lambrecht M. Brain network topology and its cognitive impact in adult glioma survivors. Sci Rep 2024; 14:12782. [PMID: 38834633 DOI: 10.1038/s41598-024-63716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Structural brain network topology can be altered in case of a brain tumor, due to both the tumor itself and its treatment. In this study, we explored the role of structural whole-brain and nodal network metrics and their association with cognitive functioning. Fifty WHO grade 2-3 adult glioma survivors (> 1-year post-therapy) and 50 matched healthy controls underwent a cognitive assessment, covering six cognitive domains. Raw cognitive assessment scores were transformed into w-scores, corrected for age and education. Furthermore, based on multi-shell diffusion-weighted MRI, whole-brain tractography was performed to create weighted graphs and to estimate whole-brain and nodal graph metrics. Hubs were defined based on nodal strength, betweenness centrality, clustering coefficient and shortest path length in healthy controls. Significant differences in these metrics between patients and controls were tested for the hub nodes (i.e. n = 12) and non-hub nodes (i.e. n = 30) in two mixed-design ANOVAs. Group differences in whole-brain graph measures were explored using Mann-Whitney U tests. Graph metrics that significantly differed were ultimately correlated with the cognitive domain-specific w-scores. Bonferroni correction was applied to correct for multiple testing. In survivors, the bilateral putamen were significantly less frequently observed as a hub (pbonf < 0.001). These nodes' assortativity values were positively correlated with attention (r(90) > 0.573, pbonf < 0.001), and proxy IQ (r(90) > 0.794, pbonf < 0.001). Attention and proxy IQ were significantly more often correlated with assortativity of hubs compared to non-hubs (pbonf < 0.001). Finally, the whole-brain graph measures of clustering coefficient (r = 0.685), global (r = 0.570) and local efficiency (r = 0.500) only correlated with proxy IQ (pbonf < 0.001). This study demonstrated potential reorganization of hubs in glioma survivors. Assortativity of these hubs was specifically associated with cognitive functioning, which could be important to consider in future modeling of cognitive outcomes and risk classification in glioma survivors.
Collapse
Affiliation(s)
- Laurien De Roeck
- Department of Radiotherapy and Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Jeroen Blommaert
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Sleurs
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Maarten Lambrecht
- Department of Radiotherapy and Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Boelders SM, Gehring K, Postma EO, Rutten GJM, Ong LLS. Cognitive functioning in untreated glioma patients: The limited predictive value of clinical variables. Neuro Oncol 2024; 26:670-683. [PMID: 38039386 PMCID: PMC10995520 DOI: 10.1093/neuonc/noad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Previous research identified many clinical variables that are significantly related to cognitive functioning before surgery. It is not clear whether such variables enable accurate prediction for individual patients' cognitive functioning because statistical significance does not guarantee predictive value. Previous studies did not test how well cognitive functioning can be predicted for (yet) untested patients. Furthermore, previous research is limited in that only linear or rank-based methods with small numbers of variables were used. METHODS We used various machine learning models to predict preoperative cognitive functioning for 340 patients with glioma across 18 outcome measures. Predictions were made using a comprehensive set of clinical variables as identified from the literature. Model performances and optimized hyperparameters were interpreted. Moreover, Shapley additive explanations were calculated to determine variable importance and explore interaction effects. RESULTS Best-performing models generally demonstrated above-random performance. Performance, however, was unreliable for 14 out of 18 outcome measures with predictions worse than baseline models for a substantial number of train-test splits. Best-performing models were relatively simple and used most variables for prediction while not relying strongly on any variable. CONCLUSIONS Preoperative cognitive functioning could not be reliably predicted across cognitive tests using the comprehensive set of clinical variables included in the current study. Our results show that a holistic view of an individual patient likely is necessary to explain differences in cognitive functioning. Moreover, they emphasize the need to collect larger cross-center and multimodal data sets.
Collapse
Affiliation(s)
- Sander M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Eric O Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Lee-Ling S Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
6
|
Smolders L, De Baene W, van der Hofstad R, Florack L, Rutten GJ. Working memory performance in glioma patients is associated with functional connectivity between the right dorsolateral prefrontal cortex and default mode network. J Neurosci Res 2023; 101:1826-1839. [PMID: 37694505 DOI: 10.1002/jnr.25242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
In healthy subjects, activity in the default mode network (DMN) and the frontoparietal network (FPN) has consistently been associated with working memory (WM). In particular, the dorsolateral prefrontal cortex (DLPFC) is important for WM. The functional-anatomical basis of WM impairment in glioma patients is, however, still poorly understood. We investigated whether WM performance of glioma patients is reflected in resting-state functional connectivity (FC) between the DMN and FPN, additionally focusing on the DLPFC. Resting-state functional MRI data were acquired from 45 glioma patients prior to surgery. WM performance was derived from a pre-operative N-back task. Scans were parcellated into ROIs using both the Gordon and Yeo atlas. FC was calculated as the average Pearson correlation between functional time series. The FC between right DLPFC and DMN was inversely related to WM performance for both the Gordon and Yeo atlas (p = .010). No association was found for FC between left DLPFC and DMN, nor between the whole FPN and DMN. The results are robust and not dependent on atlas choice or tumor location, as they hold for both the Gordon and Yeo atlases, and independently of location variables. Our findings show that WM performance of glioma patients can be quantified in terms of interactions between regions and large-scale networks that can be measured with resting-state fMRI. These group-based results are a necessary step toward development of biomarkers for clinical management of glioma patients, and provide additional evidence that global disruption of the DMN relates to cognitive impairment in glioma patients.
Collapse
Affiliation(s)
- Lars Smolders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Remco van der Hofstad
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc Florack
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Geert-Jan Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
7
|
Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales. Neurooncol Pract 2023; 10:506-517. [PMID: 38026586 PMCID: PMC10666814 DOI: 10.1093/nop/npad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Network neuroscience refers to the investigation of brain networks across different spatial and temporal scales, and has become a leading framework to understand the biology and functioning of the brain. In neuro-oncology, the study of brain networks has revealed many insights into the structure and function of cells, circuits, and the entire brain, and their association with both functional status (e.g., cognition) and survival. This review connects network findings from different scales of investigation, with the combined aim of informing neuro-oncological healthcare professionals on this exciting new field and also delineating the promising avenues for future translational and clinical research that may allow for application of network methods in neuro-oncological care.
Collapse
Affiliation(s)
- Dorien A Maas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Linda Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
8
|
van Lingen MR, Breedt LC, Geurts JJG, Hillebrand A, Klein M, Kouwenhoven MCM, Kulik SD, Reijneveld JC, Stam CJ, De Witt Hamer PC, Zimmermann MLM, Santos FAN, Douw L. The longitudinal relation between executive functioning and multilayer network topology in glioma patients. Brain Imaging Behav 2023; 17:425-435. [PMID: 37067658 PMCID: PMC10435610 DOI: 10.1007/s11682-023-00770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Many patients with glioma, primary brain tumors, suffer from poorly understood executive functioning deficits before and/or after tumor resection. We aimed to test whether frontoparietal network centrality of multilayer networks, allowing for integration across multiple frequencies, relates to and predicts executive functioning in glioma. Patients with glioma (n = 37) underwent resting-state magnetoencephalography and neuropsychological tests assessing word fluency, inhibition, and set shifting before (T1) and one year after tumor resection (T2). We constructed binary multilayer networks comprising six layers, with each layer representing frequency-specific functional connectivity between source-localized time series of 78 cortical regions. Average frontoparietal network multilayer eigenvector centrality, a measure for network integration, was calculated at both time points. Regression analyses were used to investigate associations with executive functioning. At T1, lower multilayer integration (p = 0.017) and epilepsy (p = 0.006) associated with poorer set shifting (adj. R2 = 0.269). Decreasing multilayer integration (p = 0.022) and not undergoing chemotherapy at T2 (p = 0.004) related to deteriorating set shifting over time (adj. R2 = 0.283). No significant associations were found for word fluency or inhibition, nor did T1 multilayer integration predict changes in executive functioning. As expected, our results establish multilayer integration of the frontoparietal network as a cross-sectional and longitudinal correlate of executive functioning in glioma patients. However, multilayer integration did not predict postoperative changes in executive functioning, which together with the fact that this correlate is also found in health and other diseases, limits its specific clinical relevance in glioma.
Collapse
Affiliation(s)
- Marike R van Lingen
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Lucas C Breedt
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Shanna D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mona L M Zimmermann
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Fernando A N Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Institute of Advanced Studies, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Alimohamadi M, Pour-Rashidi A, Digaleh H, Ajam Zibadi H, Hendi K, Raminfard S, Rahmani M, Larijani A, Shirani M. Disparity of Primary and Secondary Language Outcomes in Bilingual Patients Undergoing Resection of Glioma of the Speech-Related Regions. World Neurosurg 2023; 176:e327-e336. [PMID: 37230244 DOI: 10.1016/j.wneu.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The existing data about language recovery in bilingual patients come from few studies on acute lesional deficits like stroke or traumatic injury. Still, little is known about the neuroplasticity potential of bilingual patients who undergo resection of gliomas affecting language-eloquent brain regions. In this study, we prospectively evaluated the pre- and postoperative language functions among bilinguals with eloquent region gliomas. METHODS We have prospectively collected the preoperative, 3-month and 6-month postoperative data from patients with tumors infiltrating the dominant hemisphere language areas during a 15-month period. Validated Persian/Turkish version of Western Aphasia Battery test and Addenbrooke Cognitive Examination were assessed for main language (L1) and second acquired languages (L2) in each visit. RESULTS Twenty-two right-handed bilingual patients were enrolled, and language proficiencies were assessed using mixed model analysis. On baseline and postoperative points, L1 had higher scores in all Addenbrooke Cognitive Examination and Western Aphasia Battery subdomains than L2. Both languages had deterioration at 3-month visit; however, L2 was significantly more deteriorated in all domains. At 6-month visit, both L1 and L2 showed recovery; however, L2 recovered to a less extent than L1. The single most parameter affecting the ultimate language outcome in this study was the preoperative functional level of L1. CONCLUSIONS This study shows L1 is less vulnerable to operative insults and L2 may be damaged even when L1 is preserved. We would suggest the more sensitive L2 be used as the screening tool and L1 be used for confirmation of positive responses during language mapping.
Collapse
Affiliation(s)
- Maysam Alimohamadi
- Brain and spinal cord injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Ajam Zibadi
- Psychosomatic Medicine Research Center, Neuropsychiatry Section, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Hendi
- Brain and spinal cord injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Raminfard
- Brain and spinal cord injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmani
- Brain and spinal cord injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Larijani
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shirani
- Brain and spinal cord injury research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Soffietti R, Pellerino A, Bruno F, Mauro A, Rudà R. Neurotoxicity from Old and New Radiation Treatments for Brain Tumors. Int J Mol Sci 2023; 24:10669. [PMID: 37445846 DOI: 10.3390/ijms241310669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Research regarding the mechanisms of brain damage following radiation treatments for brain tumors has increased over the years, thus providing a deeper insight into the pathobiological mechanisms and suggesting new approaches to minimize this damage. This review has discussed the different factors that are known to influence the risk of damage to the brain (mainly cognitive disturbances) from radiation. These include patient and tumor characteristics, the use of whole-brain radiotherapy versus particle therapy (protons, carbon ions), and stereotactic radiotherapy in various modalities. Additionally, biological mechanisms behind neuroprotection have been elucidated.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessandro Mauro
- Department of Neuroscience "Rita Levi Montalcini", University of Turin and City of Health and Science University Hospital, 10126 Turin, Italy
- I.R.C.C.S. Istituto Auxologico Italiano, Division of Neurology and Neuro-Rehabilitation, San Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| |
Collapse
|
11
|
Tariq R, Hussain N, Baqai MWS. Factors affecting cognitive functions of patients with high-grade gliomas: a systematic review. Neurol Sci 2023; 44:1917-1929. [PMID: 36773209 DOI: 10.1007/s10072-023-06673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Gliomas make up approximately 26.5% of all primary CNS tumors and 80.7% of malignant tumors. They are classified according to histology, location, and genetics. Grade III and IV gliomas are considered high-grade gliomas (HGGs). The cognitive signs and symptoms are attributed to mass defects depending on location, growth rapidity, and edema. Our purpose is to review the cognitive status of patients diagnosed with HGGs; the effect of treatments including surgical resection, radiotherapy, and chemotherapy; and the predictors of the cognitive status. METHODS We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as a template for the methodology. A comprehensive literature search was performed from three databases (PubMed, ScienceDirect, and Cochrane Library) for clinical trials and longitudinal studies on patients diagnosed with HGGs assessing their cognitive status. RESULTS Thirteen studies were selected among which 9 assessed cognitive function before and after treatment. One assessed the consistency of cognitive complaints and objective cognitive functioning. Three reported factors affecting disease progression and cognitive status. Most HGG patients have impairment in at least one cognitive domain. Treatments including surgical resection or radio-chemotherapy did not impair cognitive status. DISCUSSION The cognitive status could be used to assess sub-clinical tumor progression. Factors correlated to cognitive status were tumor location, edema, and grade. Patient characteristics correlated were pre-operative epilepsy, corticosteroid use, and age at the time of diagnosis. CONCLUSION Assessment of the cognitive status of HGG patients indicates sub-clinical tumor progression and may be used to assess treatment outcomes.
Collapse
Affiliation(s)
- Rabeet Tariq
- Liaquat National Hospital and Medical College, Karachi, Pakistan.
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
12
|
Landers MJF, Smolders L, Rutten GJM, Sitskoorn MM, Mandonnet E, De Baene W. Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped. Cancers (Basel) 2023; 15:807. [PMID: 36765764 PMCID: PMC9913560 DOI: 10.3390/cancers15030807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Executive dysfunctions have a high prevalence in low-grade glioma patients and may be the result of structural disconnections of particular subcortical tracts and/or networks. However, little research has focused on preoperative low-grade glioma patients. The frontotemporoparietal network has been closely linked to executive functions and is substantiated by the superior longitudinal fasciculus. The aim of this study was to investigate their role in executive functions in low-grade glioma patients. Patients from two neurological centers were included with IDH-mutated low-grade gliomas. The sets of preoperative predictors were (i) distance between the tumor and superior longitudinal fasciculus, (ii) structural integrity of the superior longitudinal fasciculus, (iii) overlap between tumor and cortical networks, and (iv) white matter disconnection of the same networks. Linear regression and random forest analyses were performed. The group of 156 patients demonstrated significantly lower performance than normative samples and had a higher prevalence of executive impairments. However, both regression and random forest analyses did not demonstrate significant results, meaning that neither structural, cortical network overlap, nor network disconnection predictors explained executive performance. Overall, our null results indicate that there is no straightforward topographical explanation of executive performance in low-grade glioma patients. We extensively discuss possible explanations, including plasticity-induced network-level equipotentiality. Finally, we stress the need for the development of novel methods to unveil the complex and interacting mechanisms that cause executive deficits in low-grade glioma patients.
Collapse
Affiliation(s)
- Maud J. F. Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, 5022 GC Tilburg, The Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, 5037 AB Tilburg, The Netherlands
| | - Lars Smolders
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, 5022 GC Tilburg, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Geert-Jan M. Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, 5022 GC Tilburg, The Netherlands
| | - Margriet M. Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, 5037 AB Tilburg, The Netherlands
| | - Emmanuel Mandonnet
- Hôpitaux de Paris, University of Paris, 75006 Paris, France
- Service of Neurosurgery, Lariboisière Hospital, 75010 Paris, France
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, 5037 AB Tilburg, The Netherlands
| |
Collapse
|
13
|
Zangrossi A, Silvestri E, Bisio M, Bertoldo A, De Pellegrin S, Vallesi A, Della Puppa A, D'Avella D, Denaro L, Scienza R, Mondini S, Semenza C, Corbetta M. Presurgical predictors of early cognitive outcome after brain tumor resection in glioma patients. Neuroimage Clin 2022; 36:103219. [PMID: 36209618 PMCID: PMC9668620 DOI: 10.1016/j.nicl.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Gliomas are commonly characterized by neurocognitive deficits that strongly impact patients' and caregivers' quality of life. Surgical resection is the mainstay of therapy, and it can also cause cognitive impairment. An important clinical problem is whether patients who undergo surgery will show post-surgical cognitive impairment above and beyond that present before surgery. The relevant rognostic factors are largely unknown. This study aims to quantify the cognitive impairment in glioma patients 1-week after surgery and to compare different pre-surgical information (i.e., cognitive performance, tumor volume, grading, and lesion topography) towards predicting early post-surgical cognitive outcome. We retrospectively recruited a sample of N = 47 patients affected by high-grade and low-grade glioma undergoing brain surgery for tumor resection. Cognitive performance was assessed before and immediately after (∼1 week) surgery with an extensive neurocognitive battery. Multivariate linear regression models highlighted the combination of predictors that best explained post-surgical cognitive impairment. The impact of surgery on cognitive functioning was relatively small (i.e., 85% of test scores across the whole sample indicated no decline), and pre-operative cognitive performance was the main predictor of early post-surgical cognitive outcome above and beyond information from tumor topography and volume. In fact, structural lesion information did not significantly improve the accuracy of prediction made from cognitive data before surgery. Our findings suggest that post-surgery neurocognitive deficits are only partially explained by preoperative brain damage. The present results suggest the possibility to make reliable, individualized, and clinically relevant predictions from relatively easy-to-obtain information.
Collapse
Affiliation(s)
- Andrea Zangrossi
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Corresponding author at: Padova Neuroscience Center (PNC), University of Padova, Italy.
| | - Erica Silvestri
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Biomedical Sciences, University of Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | | | | | - Alessandro Della Puppa
- Neurosurgery Clinical Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Domenico D'Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Renato Scienza
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Sara Mondini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, University of Padova, Padova, Italy
| | - Carlo Semenza
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Neurology Clinical Unit, University Hospital of Padova, Padova, Italy,Venetian Institute of Molecular Medicine, VIMM, Foundation for Advanced Biomedical Research, Padova, Italy
| |
Collapse
|
14
|
de Ruiter MB, Groot PFC, Deprez S, Pullens P, Sunaert S, de Ruysscher D, Schagen SB, Belderbos J. Hippocampal avoidance prophylactic cranial irradiation (HA-PCI) for small cell lung cancer reduces hippocampal atrophy compared to conventional PCI. Neuro Oncol 2022; 25:167-176. [PMID: 35640975 PMCID: PMC9825336 DOI: 10.1093/neuonc/noac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reducing radiation dose to the hippocampus with hippocampal avoidance prophylactic cranial irradiation (HA-PCI) is proposed to prevent cognitive decline. It has, however, not been investigated whether hippocampal atrophy is actually mitigated by this approach. Here, we determined whether HA-PCI reduces hippocampal atrophy. Additionally, we evaluated neurotoxicity of (HA-)PCI to other brain regions. Finally, we evaluated associations of hippocampal atrophy and brain neurotoxicity with memory decline. METHODS High-quality research MRI scans were acquired in the multicenter, randomized phase 3 trial NCT01780675. Hippocampal atrophy was evaluated for 4 months (57 HA-PCI patients and 46 PCI patients) and 12 months (28 HA-PCI patients and 27 PCI patients) after (HA-)PCI. We additionally studied multimodal indices of brain injury. Memory was assessed with the Hopkins Verbal Learning Test-Revised (HVLT-R). RESULTS HA-PCI reduced hippocampal atrophy at 4 months (1.8% for HA-PCI and 3.0% for PCI) and at 12 months (3.0% for HA-PCI and 5.8% for PCI). Both HA-PCI and PCI were associated with considerable reductions in gray matter and normal-appearing white matter, increases in white matter hyperintensities, and brain aging. There were no significant associations between hippocampal atrophy and memory. CONCLUSIONS HA-PCI reduces hippocampal atrophy at 4 and 12 months compared to regular PCI. Both types of radiotherapy are associated with considerable brain injury. We did not find evidence for excessive brain injury after HA-PCI relative to PCI. Hippocampal atrophy was not associated with memory decline in this population as measured with HVLT-R. The usefulness of HA-PCI is still subject to debate.
Collapse
Affiliation(s)
- Michiel B de Ruiter
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul F C Groot
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University, Ghent, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk de Ruysscher
- Radiation Oncology (MAASTRO), School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sanne B Schagen
- Corresponding Author: Sanne B. Schagen, PhD, Brain and Cognition, Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS, Amsterdam, the Netherlands ()
| | | |
Collapse
|
15
|
Probing individual-level structural atrophy in frontal glioma patients. Neurosurg Rev 2022; 45:2845-2855. [PMID: 35508819 DOI: 10.1007/s10143-022-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Although every glioma patient varies in tumor size, location, histological grade and molecular biomarkers, non-tumoral morphological abnormalities are commonly detected by a statistical comparison among patient groups, missing the information of individual morphological alterations. In this study, we introduced an individual-level structural abnormality detection method for glioma patients and proposed several abnormality indexes to depict individual atrophy patterns. Forty-five patients with a glioma in the frontal lobe and fifty-one age-matched healthy controls participated in the study. Individual structural abnormality maps (SAM) were generated using patients' preoperative T1 images, by calculating the degree of deviation of voxel volume in each patient with the normative model built from healthy controls. Based on SAM, a series of individual abnormality indexes were computed, and their relationship with glioma characteristics was explored. The results demonstrated that glioma patients showed unique non-tumoral atrophy patterns with overlapping atrophy regions mainly located at hippocampus, parahippocampus, amygdala, insula, middle temporal gyrus and inferior temporal gyrus, which are closely related to the human cognitive functions. The abnormality indexes were associated with several molecular biomarkers including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation. Our study provides an effective way to access the individual-level non-tumoral structural abnormalities in glioma patients, which has the potential to significantly improve individualized precision medicine.
Collapse
|
16
|
Silvestri E, Moretto M, Facchini S, Castellaro M, Anglani M, Monai E, D’Avella D, Della Puppa A, Cecchin D, Bertoldo A, Corbetta M. Widespread cortical functional disconnection in gliomas: an individual network mapping approach. Brain Commun 2022; 4:fcac082. [PMID: 35474856 PMCID: PMC9034119 DOI: 10.1093/braincomms/fcac082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Assessment of impaired/preserved cortical regions in brain tumours is typically performed via intraoperative direct brain stimulation of eloquent areas or task-based functional MRI. One main limitation is that they overlook distal brain regions or networks that could be functionally impaired by the tumour.
This study aims: 1) to investigate the impact of brain tumours on the cortical synchronization of brain networks measured with resting-state functional magnetic resonance imaging (resting-state networks) both near the lesion and remotely; 2) to test whether potential changes in resting state networks correlate with cognitive status.
The sample included twenty-four glioma patients (mean age 58.1 ± 16.4y) with different pathological staging. We developed a new method for single subject localization of resting state networks abnormalities. First, we derived the spatial pattern of the main resting state networks by means of the group guided independent component analysis. This was informed by a high-resolution resting state networks template derived from an independent sample of healthy controls. Second, we developed a spatial similarity index to measure differences in network topography and strength between healthy controls and individual brain tumour patients. Next, we investigated the spatial relationship between altered networks and tumour location. Finally, multivariate analyses related cognitive scores across multiple cognitive domains (attention, language, memory, decision making) with patterns of multi-network abnormality.
We found that brain gliomas cause broad alterations of resting state networks topography that occurred mainly in structurally normal regions outside the tumour and oedema region. Cortical regions near the tumour often showed normal synchronization. Finally, multi-network abnormalities predicted attention deficits.
Overall, we present a novel method for the functional localization of resting state networks abnormalities in individual glioma patients. These abnormalities partially explain cognitive disabilities and shall be carefully navigated during surgery.
Collapse
Affiliation(s)
- Erica Silvestri
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Manuela Moretto
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Silvia Facchini
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | | - Elena Monai
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Domenico D’Avella
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, 50139 Florence, Italy
| | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Medicine, Unit of Nuclear Medicine, University of Padova, 35128 Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
17
|
Functional reorganization of contralesional networks varies according to isocitrate dehydrogenase 1 mutation status in patients with left frontal lobe glioma. Neuroradiology 2022; 64:1819-1828. [PMID: 35348814 DOI: 10.1007/s00234-022-02932-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE The study aimed to assess how isocitrate dehydrogenase 1 (IDH1) mutation status in patients with glioma may alter functional connectivity (FC) in the default mode network (DMN) and fronto-parietal network (FPN). METHODS Using resting-state functional magnetic resonance imaging, a seed-based FC analysis was employed to investigate connectivity within and between networks in seventeen patients with IDH1-mutant glioma (IDH1-M), eleven patients with IDH1-wildtype glioma (IDH1-WT), and nineteen healthy controls (HC). RESULTS For FC within the DMN, compared to HC, both IDH1-M and IDH1-WT exhibited significantly increased FC between the posterior cingulate cortex (PCC) and the right retrosplenial cortex, right precuneus/cuneus, and right middle cingulate cortex and between the right lateral parietal cortex (LP_R) and the right middle temporal gyrus. For FC within the FPN, compared with HC, IDH1-M showed significantly greater FC between the right posterior parietal cortex (PPC_R) and the right inferior, right medial, and right middle frontal gyrus, and IDH1-WT showed significantly increased FC between the PPC_R and the right middle frontal gyrus. For FC between the DMN and FPN, relative to IDH1-WT and HC, IDH1-M exhibited significantly increased FC between the LP_R and the right superior frontal gyrus and between the PPC_R and the right precuneus/cuneus. In contrast, compared to IDH1-M and HC, IDH1-WT showed significantly reduced FC between the PPC_R and the right angular gyrus. CONCLUSION The preliminary findings revealed that there should be differences in the patterns of network reorganization between IDH1-M and IDH1-WT with different growth kinetics.
Collapse
|
18
|
Gregorich M, Melograna F, Sunqvist M, Michiels S, Van Steen K, Heinze G. Individual-specific networks for prediction modelling – A scoping review of methods. BMC Med Res Methodol 2022; 22:62. [PMID: 35249534 PMCID: PMC8898441 DOI: 10.1186/s12874-022-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recent advances in biotechnology enable the acquisition of high-dimensional data on individuals, posing challenges for prediction models which traditionally use covariates such as clinical patient characteristics. Alternative forms of covariate representations for the features derived from these modern data modalities should be considered that can utilize their intrinsic interconnection. The connectivity information between these features can be represented as an individual-specific network defined by a set of nodes and edges, the strength of which can vary from individual to individual. Global or local graph-theoretical features describing the network may constitute potential prognostic biomarkers instead of or in addition to traditional covariates and may replace the often unsuccessful search for individual biomarkers in a high-dimensional predictor space. Methods We conducted a scoping review to identify, collate and critically appraise the state-of-art in the use of individual-specific networks for prediction modelling in medicine and applied health research, published during 2000–2020 in the electronic databases PubMed, Scopus and Embase. Results Our scoping review revealed the main application areas namely neurology and pathopsychology, followed by cancer research, cardiology and pathology (N = 148). Network construction was mainly based on Pearson correlation coefficients of repeated measurements, but also alternative approaches (e.g. partial correlation, visibility graphs) were found. For covariates measured only once per individual, network construction was mostly based on quantifying an individual’s contribution to the overall group-level structure. Despite the multitude of identified methodological approaches for individual-specific network inference, the number of studies that were intended to enable the prediction of clinical outcomes for future individuals was quite limited, and most of the models served as proof of concept that network characteristics can in principle be useful for prediction. Conclusion The current body of research clearly demonstrates the value of individual-specific network analysis for prediction modelling, but it has not yet been considered as a general tool outside the current areas of application. More methodological research is still needed on well-founded strategies for network inference, especially on adequate network sparsification and outcome-guided graph-theoretical feature extraction and selection, and on how networks can be exploited efficiently for prediction modelling. Supplementary Information The online version contains supplementary material available at 10.1186/s12874-022-01544-6.
Collapse
|
19
|
Noll K, King AL, Dirven L, Armstrong TS, Taphoorn MJB, Wefel JS. Neurocognition and Health-Related Quality of Life Among Patients with Brain Tumors. Hematol Oncol Clin North Am 2021; 36:269-282. [PMID: 34711455 DOI: 10.1016/j.hoc.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with brain tumors experience great symptom burden across various domains of functioning, with associated decreases in health-related quality of life and general well-being. Impaired neurocognitive functioning is among the primary concerns of these patients. Unfortunately, most patients will experience such impairment at some point in the disease. However, impaired neurocognitive functioning, symptom burden, and well-being vary according numerous patient-, tumor-, and treatment-related factors. Recent work has furthered our understanding of these contributors to patient functioning and health-related quality of life and also points to various potential targets for prevention and intervention strategies, though more efficacious treatments remain needed.
Collapse
Affiliation(s)
- Kyle Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA
| | - Amanda L King
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9030 Old Georgetown Road, Building 82, Room 214, Bethesda, MD 20892, USA
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, PO Box 432, 2501 CK, The Hague, the Netherlands
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 82, Room 201, Bethesda, MD 20892, USA
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, PO Box 432, 2501 CK, The Hague, the Netherlands
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Jütten K, Weninger L, Mainz V, Gauggel S, Binkofski F, Wiesmann M, Merhof D, Clusmann H, Na CH. Dissociation of structural and functional connectomic coherence in glioma patients. Sci Rep 2021; 11:16790. [PMID: 34408195 PMCID: PMC8373888 DOI: 10.1038/s41598-021-95932-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023] Open
Abstract
With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.
Collapse
Affiliation(s)
- Kerstin Jütten
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Leon Weninger
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Verena Mainz
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Siegfried Gauggel
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, RWTH Aachen University, Pauwelsstraße 17, 52074, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Dorit Merhof
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Chuh-Hyoun Na
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
21
|
Herbet G. Should Complex Cognitive Functions Be Mapped With Direct Electrostimulation in Wide-Awake Surgery? A Network Perspective. Front Neurol 2021; 12:635439. [PMID: 33912124 PMCID: PMC8072013 DOI: 10.3389/fneur.2021.635439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guillaume Herbet
- Institute of Functional Genomics, INSERM, CNRS, University of Montpellier, Montpellier, France.,Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
22
|
Cai S, Shi Z, Jiang C, Wang K, Chen L, Ai L, Zhang L. Hemisphere-Specific Functional Remodeling and Its Relevance to Tumor Malignancy of Cerebral Glioma Based on Resting-State Functional Network Analysis. Front Neurosci 2021; 14:611075. [PMID: 33519363 PMCID: PMC7838505 DOI: 10.3389/fnins.2020.611075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Functional remodeling may vary with tumor aggressiveness of glioma. Investigation of the functional remodeling is expected to provide scientific relevance of tumor characterization and disease management of glioma. In this study, we aimed to investigate the functional remodeling of the contralesional hemisphere and its utility in predicting the malignant grade of glioma at the individual level with multivariate logistic regression (MLR) analysis. SUBJECTS AND METHODS One hundred and twenty-six right-handed subjects with histologically confirmed cerebral glioma were included with 80 tumors located in the left hemisphere (LH) and 46 tumors located in the right hemisphere (RH). Resting-state functional networks of the contralesional hemisphere were constructed using the human brainnetome atlas based on resting-state fMRI data. Functional connectivity and topological features of functional networks were quantified. The performance of functional features in predicting the glioma grade was evaluated using area under (AUC) the receiver operating characteristic curve (ROC). The dataset was divided into training and validation datasets. Features with high AUC values in malignancy classification in the training dataset were determined as predictive features. An MLR model was constructed based on predictive features and its classification performance was evaluated on the training and validation datasets with 10-fold cross validation. RESULTS Predictive functional features showed apparent hemispheric specifications. MLR classification models constructed with age and predictive functional connectivity features (AUC of 0.853 ± 0.079 and 1.000 ± 0.000 for LH and RH group, respectively) and topological features (AUC of 0.788 ± 0.150 and 0.897 ± 0.165 for LH and RH group, respectively) achieved efficient performance in predicting the malignant grade of gliomas. CONCLUSION Functional remodeling of the contralesional hemisphere was hemisphere-specific and highly predictive of the malignant grade of glioma. Network approach provides a novel pathway that may innovate glioma characterization and management at the individual level.
Collapse
Affiliation(s)
- Siqi Cai
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Chunxiang Jiang
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Lin Ai
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijuan Zhang
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Nenning KH, Furtner J, Kiesel B, Schwartz E, Roetzer T, Fortelny N, Bock C, Grisold A, Marko M, Leutmezer F, Liu H, Golland P, Stoecklein S, Hainfellner JA, Kasprian G, Prayer D, Marosi C, Widhalm G, Woehrer A, Langs G. Distributed changes of the functional connectome in patients with glioblastoma. Sci Rep 2020; 10:18312. [PMID: 33110138 PMCID: PMC7591862 DOI: 10.1038/s41598-020-74726-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Marko
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hesheng Liu
- A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Cambridge, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Sophia Stoecklein
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria. .,Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
24
|
Brain Functional Network in Chronic Asymptomatic Carotid Artery Stenosis and Occlusion: Changes and Compensation. Neural Plast 2020; 2020:9345602. [PMID: 33029129 PMCID: PMC7530486 DOI: 10.1155/2020/9345602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Asymptomatic carotid artery stenosis (CAS) and occlusion (CAO) disrupt cerebral hemodynamics. There are few studies on the brain network changes and compensation associated with the progression from chronic CAS to CAO. In the current study, our goal is to improve the understanding of the specific abnormalities and compensatory phenomena associated with the functional connection in patients with CAS and CAO. In this prospective study, 27 patients with CAO, 29 patients with CAS, and 15 healthy controls matched for age, sex, education, handedness, and risk factors underwent neuropsychological testing and resting-state functional magnetic resonance (rs-fMRI) imaging simultaneously; graph theoretical analysis of brain networks was performed to determine the relationship between changes in brain network connectivity and the progression from internal CAS to CAO. The global properties of the brain network assortativity (p = 0.002), hierarchy (p = 0.002), network efficiency (p = 0.011), and small-worldness (p = 0.009) were significantly more abnormal in the CAS group than in the control and CAO groups. In patients with CAS and CAO, the nodal efficiency of key nodes in multiple brain regions decreased, while the affected hemisphere lost many key functional connections. In this study, we found that patients with CAS showed grade reconstruction, invalid connections, and other phenomena that impaired the efficiency of information transmission in the brain network. A compensatory functional connection in the contralateral cerebral hemisphere of patients with CAS and CAO may be an important mechanism that maintains clinical asymptomatic performance. This study not only reveals the compensation mechanism of cerebral hemisphere ischemia but also validates previous explanations for brain function connectivity, which can help provide interventions in advance and reduce the impairment of higher brain functions. This trial is registered with Clinical Trial Registration-URL http://www.chictr.org.cn and Unique identifier ChiCTR1900023610.
Collapse
|
25
|
Impaired neurocognitive function in glioma patients: from pathophysiology to novel intervention strategies. Curr Opin Neurol 2020; 33:716-722. [PMID: 33009006 DOI: 10.1097/wco.0000000000000865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review succinctly summarizes the recent literature regarding etiological contributors to impaired neurocognitive function (NCF) in adult patients with glioma. A brief overview of intervention and prevention strategies is also provided. RECENT FINDINGS A majority of patients with glioma exhibit NCF deficits, most frequently in memory and executive functioning. Impairments are often disabling and associated with reduced quality of life and survival. Cause is multifactorial and includes the tumour itself, treatments received and associated comorbidities. Although modern techniques such as brain mapping, dosing modifications and prophylactic medication aim to improve the NCF outcomes following neurosurgical resection and radiation therapy, a sizeable proportion of patients continue to evidence treatment-related NCF declines related to adverse effects to both local and distributed cerebral networks. Numerous patient and tumour characteristics, including genetic markers and sociodemographic factors, influence the pattern and severity of NCF impairment. Some rehabilitative and pharmacologic approaches show promise in mitigating NCF impairment in this population, though benefits are somewhat modest and larger scale intervention studies are needed. SUMMARY Research regarding NCF in patients with glioma has dramatically proliferated, providing insights into the mechanisms underlying impaired NCF and pointing to potential interventions, though further work is needed.
Collapse
|
26
|
Jütten K, Mainz V, Delev D, Gauggel S, Binkofski F, Wiesmann M, Clusmann H, Na CH. Asymmetric tumor-related alterations of network-specific intrinsic functional connectivity in glioma patients. Hum Brain Mapp 2020; 41:4549-4561. [PMID: 32716597 PMCID: PMC7555062 DOI: 10.1002/hbm.25140] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) allows mapping temporally coherent brain networks, and intra- and inter-network alterations have been described in different diseases. This prospective study investigated hemispheric resting-state functional connectivity (RSFC) differences in the default-mode network (DMN) and fronto-parietal network (FPN) between patients with left- and right-hemispheric gliomas (LH PAT, RH PAT), addressing asymmetry effects the tumor might have on network-specific intrinsic functional connectivity under consideration of the prognostically relevant isocitrate-dehydrogenase (IDH) mutation status. Twenty-seven patients (16 LH PAT, 12 IDH-wildtype) and 27 healthy controls underwent anatomical and rs-fMRI as well as neuropsychological assessment. Independent component analyses were performed to identify the DMN and FPN. Hemispheric DMN- and FPN-RSFC were computed, compared across groups, and correlated with cognitive performance. Patient groups did not differ in tumor volume, grade or location. RH PAT showed higher contra-tumoral DMN-RSFC than controls and LH PAT. With regard to the FPN, contra-tumoral RSFC was increased in both patient groups as compared to controls. Higher contra-tumoral RSFC was associated with worse cognitive performance in patients, which, however, seemed to apply mainly to IDH-wildtype patients. The benefit of RSFC alterations for cognitive performance varied depending on the affected hemisphere, cognitive demand, and seemed to be altered by IDH-mutation status. At the time of study initiation, a clinical trial registration was not mandatory at our faculty, but it can be applied for if requested.
Collapse
Affiliation(s)
- Kerstin Jütten
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Verena Mainz
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Siegfried Gauggel
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Aachen, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, RWTH Aachen University, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Chuh-Hyoun Na
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Rijnen SJM, Butterbrod E, Rutten GJM, Sitskoorn MM, Gehring K. Presurgical Identification of Patients With Glioblastoma at Risk for Cognitive Impairment at 3-Month Follow-up. Neurosurgery 2020; 87:1119-1129. [PMID: 32470985 PMCID: PMC7666888 DOI: 10.1093/neuros/nyaa190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/18/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pre- and postoperative cognitive deficits have repeatedly been demonstrated in patients with glioblastoma (GBM). OBJECTIVE To identify presurgical risk factors that facilitate the identification of GBM patients at risk for postoperative cognitive impairment. METHODS Patients underwent neuropsychological assessment using Central Nervous System Vital Signs 1 d before (T0) and 3 mo after surgery (T3). Patients’ standardized scores on 7 cognitive domains were compared to a normative sample using one-sample z tests. Reliable change indices with correction for practice effects were calculated to assess cognitive changes in individual patients over time. Logistic regression models were performed to assess presurgical sociodemographic, clinical, psychological, and cognitive risk factors for postoperative cognitive impairments. RESULTS At T0, 208 patients were assessed, and 136 patients were retested at T3. Patients showed significantly lower performance both prior to and 3 mo after surgery on all cognitive domains compared to healthy controls. Improvements and declines over time occurred respectively in 11% to 32% and 6% to 26% of the GBM patients over the domains. The regression models showed that low preoperative cognitive performance posits a significant risk factor for postoperative cognitive impairment on all domains, and female sex was a risk factor for postoperative impairments in Visual Memory. CONCLUSION We demonstrated preoperative cognitive risk factors that enable the identification of GBM patients who are at risk for cognitive impairment 3 mo after surgery. This information can help to inform patients and clinicians at an early stage, and emphasizes the importance of recognizing, assessing, and actively dealing with cognitive functioning in the clinical management of GBM patients.
Collapse
Affiliation(s)
- Sophie J M Rijnen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands.,Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| | - Elke Butterbrod
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands.,Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| |
Collapse
|
28
|
Kocher M, Jockwitz C, Caspers S, Schreiber J, Farrher E, Stoffels G, Filss C, Lohmann P, Tscherpel C, Ruge MI, Fink GR, Shah NJ, Galldiks N, Langen KJ. Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020; 27:102287. [PMID: 32540630 PMCID: PMC7298724 DOI: 10.1016/j.nicl.2020.102287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Progressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients. METHODS Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n = 57; WHO grade III anaplastic astrocytoma, n = 13; WHO grade III anaplastic oligodendroglioma, n = 10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls. RESULTS The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education. CONCLUSION Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Caroline Tscherpel
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute of Neuroscience and Medicine 11, JARA, Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
29
|
De Baene W, Rutten GJM, Sitskoorn MM. Cognitive functioning in glioma patients is related to functional connectivity measures of the non-tumoural hemisphere. Eur J Neurosci 2019; 50:3921-3933. [PMID: 31370107 PMCID: PMC6972640 DOI: 10.1111/ejn.14535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Previous studies have shown that cognitive functioning in patients with brain tumour is associated with the functional network characteristics of specific resting‐state networks or with whole‐brain network characteristics. These studies, however, did not acknowledge the functional contribution of areas in the contralesional, non‐tumoural hemisphere, even though these healthy remote areas likely play a critical role in compensating for the loss of function in damaged tissue. In the current study, we examined whether there is an association between cognitive performance and functional network features of the contralesional hemisphere of patients with glioma. We found that local efficiency of the contralesional hemisphere was associated with performance on the reaction time domain, whereas contralesional assortativity was associated with complex attention and cognitive flexibility scores. Our results suggest that a less segregated organization of the contralesional hemisphere is associated with better reaction time scores, whereas a better spread of information over the contralesional hemisphere through mutually interconnected contralesional hubs is associated with better cognitive flexibility and better complex attention scores. These findings urge researchers to recognize the functional contribution of remote, undamaged regions and to focus more on the graph metrics of the contralesional hemisphere in the search for predictors of cognitive functioning in patients with brain tumour.
Collapse
Affiliation(s)
- Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|