1
|
Karakashevska E, Bertamini M, Makin ADJ. Putting things into perspective: Which visual cues facilitate automatic extraretinal symmetry representation? Cortex 2025; 184:131-149. [PMID: 39855054 DOI: 10.1016/j.cortex.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective. Visual symmetry activates the extrastriate visual cortex and generates an Event Related Potential (ERP) called Sustained Posterior Negativity (SPN). Previous research has shown that the SPN is reduced for perspective symmetry during secondary tasks. We hypothesized that perspective cost would decrease when visual cues support extraretinal representation. To test this, 120 participants viewed symmetrical and asymmetrical stimuli presented in a frontoparallel or perspective view. The task did not explicitly involve symmetry; participants discriminated the luminance of the patterns. Participants completed four experimental blocks: (1) Baseline block: no depth cues; (2) Monocular viewing block: stimuli viewed with one eye; (3) Static frame block: pictorial depth cues from elements within a flat surface with edges; (4) Moving frame block: motion parallax enhanced 3D interpretation before stimulus onset. Perspective cost was calculated as the difference between SPN responses to frontoparallel and perspective views. Contrary to our pre-registered hypotheses, the perspective cost was consistent across all four blocks. We conclude that the tested visual cues do not substantially reduce the computational cost of processing perspective symmetry.
Collapse
Affiliation(s)
- Elena Karakashevska
- Institute of Population Health, University of Liverpool, Liverpool, United Kingdom.
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, IT, Italy
| | - Alexis D J Makin
- Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
A comparison of equivalent noise methods in investigating local and global form and motion integration. Atten Percept Psychophys 2023; 85:152-165. [PMID: 36380147 DOI: 10.3758/s13414-022-02595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/16/2022]
Abstract
Static and dynamic cues within certain spatiotemporal proximity are used to evoke respective global percepts of form and motion. The limiting factors in this process are, first, internal noise, which indexes local orientation/direction detection, and, second, sampling efficiency, which relates to the processing and the representation of global orientation/direction. These parameters are quantified using the equivalent noise (EN) paradigm. EN has been implemented with just two levels: high and low noise. However, when using this simplified version, one must assume the shape of the overall noise dependence, as the intermediate points are missing. Here, we investigated whether two distinct EN methods, the 8-point and the simplified 2-point version, reveal comparable parameter estimates. This was performed for three different types of stimuli: random dot kinematograms, and static and dynamic translational Glass patterns, to investigate how constant internal noise estimates are, and how sampling efficiency might vary over tasks. The results indicated substantial compatibility between estimates over a wide range of external noise levels sampled with eight data points, and a simplified version producing two highly informative data points. Our findings support the use of a simplified procedure to estimate essential form-motion integration parameters, paving the way for rapid and critical applications to populations that cannot tolerate protracted measurements.
Collapse
|
3
|
Overlapping Neural Responses to Reflectional Symmetry and Glass Patterns Revealed by an ERP Priming Paradigm. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The extrastriate visual cortex is activated by visual regularity and generates an ERP known as the sustained posterior negativity (SPN). Spatial filter models offer a biologically plausible account of regularity detection based on the spectral properties of an image. These models are specific to reflection and therefore imply that reflectional symmetry and Glass patterns are coded by different neural populations. We utilised the SPN priming effect to probe representational overlap between reflection and Glass patterns. For each trial, participants were presented with a rapid succession of three patterns. In the Repeated condition, three reflections or three Glass patterns were presented. In the Changing condition, patterns alternated between reflection and Glass patterns. An increase in SPN amplitude (priming) was observed in both the Repeated and Changing conditions. Results indicate a greater representational overlap in the brain between reflection and Glass patterns than predicted by spatial filter models.
Collapse
|
4
|
Rampone G, Adam M, Makin ADJ, Tyson-Carr J, Bertamini M. Electrophysiological evidence of the amodal representation of symmetry in extrastriate areas. Sci Rep 2022; 12:1180. [PMID: 35064121 PMCID: PMC8783022 DOI: 10.1038/s41598-021-04501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
Extrastriate visual areas are strongly activated by image symmetry. Less is known about symmetry representation at object-level rather than image-level. Here we investigated electrophysiological responses to symmetry, generated by amodal completion of partially-occluded polygon shapes. We used a similar paradigm in four experiments (N = 112). A fully-visible abstract shape (either symmetric or asymmetric) was presented for 250 ms (t0). A large rectangle covered it entirely for 250 ms (t1) and then moved to one side to reveal one half of the shape hidden behind (t2, 1000 ms). Note that at t2 no symmetry could be extracted from retinal image information. In half of the trials the shape was the same as previously presented, in the other trials it was replaced by a novel shape. Participants matched shapes similarity (Exp. 1 and Exp. 2), or their colour (Exp. 3) or the orientation of a triangle superimposed to the shapes (Exp. 4). The fully-visible shapes (t0-t1) elicited automatic symmetry-specific ERP responses in all experiments. Importantly, there was an exposure-dependent symmetry-response to the occluded shapes that were recognised as previously seen (t2). Exp. 2 and Exp.4 confirmed this second ERP (t2) did not reflect a reinforcement of a residual carry-over response from t0. We conclude that the extrastriate symmetry-network can achieve amodal representation of symmetry from occluded objects that have been previously experienced as wholes.
Collapse
Affiliation(s)
- Giulia Rampone
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L697ZA, UK. .,School of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L7 7DL, UK.
| | - Martyna Adam
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L697ZA, UK
| | - Alexis D J Makin
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L697ZA, UK
| | - John Tyson-Carr
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L697ZA, UK
| | - Marco Bertamini
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, L697ZA, UK.,Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padova, Italy
| |
Collapse
|
5
|
Cattaneo Z, Bona S, Ciricugno A, Silvanto J. The chronometry of symmetry detection in the lateral occipital (LO) cortex. Neuropsychologia 2022; 167:108160. [PMID: 35038443 DOI: 10.1016/j.neuropsychologia.2022.108160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
The lateral occipital cortex (LO) has been shown to code the presence of both vertical and horizontal visual symmetry in dot patterns. However, the specific time window at which LO is causally involved in symmetry encoding has not been investigated. This was assessed using a chronometric transcranial magnetic stimulation (TMS) approach. Participants were presented with a series of dot configurations and instructed to judge whether they were symmetric along the vertical axis or not while receiving a double pulse of TMS over either the right LO (rLO) or the vertex (baseline) at different time windows (ranging from 50 ms to 290 ms from stimulus onset). We found that TMS delivered over the rLO significantly decreased participants' accuracy in discriminating symmetric from non-symmetric patterns when TMS was applied between 130 ms and 250 ms from stimulus onset, suggesting that LO is causally involved in symmetry perception within this time window. These findings confirm and extend prior neuroimaging and ERP evidence by demonstrating not only that LO is causally involved in symmetry encoding but also that its contribution occurs in a relatively large temporal window, at least in tasks requiring fast discrimination of mirror symmetry in briefly (75 ms) presented patterns as in our study.
Collapse
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Bona
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Juha Silvanto
- School of Psychology, University of Surrey, Surrey, UK
| |
Collapse
|
6
|
Donato R, Pavan A, Almeida J, Nucci M, Campana G. Temporal characteristics of global form perception in translational and circular Glass patterns. Vision Res 2021; 187:102-109. [PMID: 34246174 DOI: 10.1016/j.visres.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
The human visual system is continuously exposed to a natural environment with static and moving objects that the visual system needs to continuously integrate and process. Glass patterns (GPs) are a class of visual stimuli widely used to study how the human visual system processes and integrates form and motion signals. GPs are made of pairs of dots that elicit a strong percept of global form. A rapid succession of unique frames originates dynamic GPs. Previous psychophysical studies showed that dynamic translational GPs are easier to detect than the static version because of the spatial summation across the unique frames composing the pattern. However, it is not clear whether the same mechanism is involved in dynamic circular GPs. In the present study, we psychophysically investigated the role of the temporal and spatial summation in the perception of both translational and circular GPs. We manipulated the number of unique frames in dynamic GPs and the update rate of the frames presentation. The results suggest that spatial and temporal summation across unique frames takes place for both translational and circular GPs. Moreover, the number of unique frames and the pattern update rate equally influence the discrimination thresholds of translational and circular GPs. These results show that form and motion integration is likely to be processed similarly for translational and circular GPs.
Collapse
Affiliation(s)
- Rita Donato
- University of Padova, Department of General Psychology, Via Venezia 8, 35131 Padova, Italy; Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy; Proaction Laboratory, University of Coimbra, Faculty of Psychology and Educational Sciences, Colégio de Jesus, Rua Inácio Duarte 65, 3000-481 Coimbra, Portugal.
| | - Andrea Pavan
- University of Bologna, Department of Psychology, Viale Berti Pichat, 5, 40127 Bologna, Italy
| | - Jorge Almeida
- Proaction Laboratory, University of Coimbra, Faculty of Psychology and Educational Sciences, Colégio de Jesus, Rua Inácio Duarte 65, 3000-481 Coimbra, Portugal; CINEICC, University of Coimbra, Faculty of Psychology and Educational Sciences, Rua Colégio Novo, 3000-115 Coimbra, Portugal
| | - Massimo Nucci
- University of Padova, Department of General Psychology, Via Venezia 8, 35131 Padova, Italy
| | - Gianluca Campana
- University of Padova, Department of General Psychology, Via Venezia 8, 35131 Padova, Italy; Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy
| |
Collapse
|
7
|
Pavan A. Spatial and Temporal Selectivity of Translational Glass Patterns Assessed With the Tilt After-Effect. Iperception 2021; 12:20416695211017924. [PMID: 34104382 PMCID: PMC8172339 DOI: 10.1177/20416695211017924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glass patterns (GPs) have been widely employed to investigate the mechanisms underlying processing of global form from locally oriented cues. The current study aimed to psychophysically investigate the level at which global orientation is extracted from translational GPs using the tilt after-effect (TAE) and manipulating the spatiotemporal properties of the adapting pattern. We adapted participants to translational GPs and tested with sinewave gratings. In Experiment 1, we investigated whether orientation-selective units are sensitive to the temporal frequency of the adapting GP. We used static and dynamic translational GPs, with dynamic GPs refreshed at different temporal frequencies. In Experiment 2, we investigated the spatial frequency selectivity of orientation-selective units by manipulating the spatial frequency content of the adapting GPs. The results showed that the TAE peaked at a temporal frequency of ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are sensitive to high temporal frequencies. In addition, TAE from translational GPs peaked at lower spatial frequencies than the dipoles' spatial constant. These effects are consistent with form-motion integration at low and intermediate levels of visual processing.
Collapse
Affiliation(s)
- Andrea Pavan
- Department of Psychology, University of
Bologna, Bologna, Italy; School of Psychology, University of Lincoln,
Lincoln, UK
| |
Collapse
|
8
|
Donato R, Pavan A, Campana G. Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. Front Psychol 2020; 11:566848. [PMID: 33192845 PMCID: PMC7661965 DOI: 10.3389/fpsyg.2020.566848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
A widely held view of the visual system supported the perspective that the primate brain is organized in two main specialized streams, called the ventral and dorsal streams. The ventral stream is known to be involved in object recognition (e.g., form and orientation). In contrast, the dorsal stream is thought to be more involved in spatial recognition (e.g., the spatial relationship between objects and motion direction). Recent evidence suggests that these two streams are not segregated but interact with each other. A class of visual stimuli known as Glass patterns has been developed to shed light on this process. Glass patterns are visual stimuli made of pairs of dots, called dipoles, that give the percept of a specific form or apparent motion, depending on the spatial and temporal arrangement of the dipoles. In this review, we show an update of the neurophysiological, brain imaging, psychophysical, clinical, and brain stimulation studies which have assessed form and motion integration mechanisms, and the level at which this occurs in the human and non-human primate brain. We also discuss several studies based on non-invasive brain stimulation techniques that used different types of visual stimuli to assess the cortico-cortical interactions in the visual cortex for the processing of form and motion information. Additionally, we discuss the timing of specific visual processing in the ventral and dorsal streams. Finally, we report some parallels between healthy participants and neurologically impaired patients in the conscious processing of form and motion.
Collapse
Affiliation(s)
- Rita Donato
- Department of General Psychology, University of Padua, Padua, Italy
- Human Inspired Technology Research Centre, University of Padua, Padua, Italy
| | - Andrea Pavan
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Gianluca Campana
- Department of General Psychology, University of Padua, Padua, Italy
- Human Inspired Technology Research Centre, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Makin ADJ, Piovesan A, Tyson-Carr J, Rampone G, Derpsch Y, Bertamini M. Electrophysiological priming effects confirm that the extrastriate symmetry network is not gated by luminance polarity. Eur J Neurosci 2020; 53:964-973. [PMID: 32897595 DOI: 10.1111/ejn.14966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/05/2023]
Abstract
It is known that the extrastriate cortex is activated by visual symmetry. This activation generates an ERP component called the Sustained Posterior Negativity (SPN). SPN amplitude increases (i.e., becomes more negative) with repeated presentations. We exploited this SPN priming effect to test whether the extrastriate symmetry response is gated by element luminance polarity. On each trial, participants observed three stimuli (patterns of dots) in rapid succession (500 ms. with 200 ms. gaps). The patterns were either symmetrical or random. The dot elements were either black or white on a grey background. The triplet sequences either showed repeated luminance (black > black > black, or white > white > white) or changing luminance (black > white > black, or white > black > white). As predicted, SPN priming was comparable in repeated and changing luminance conditions. Therefore, symmetry with black elements is not processed independently from symmetry with white elements. Source waveform analysis confirmed that this priming happened within the extrastriate symmetry network. We conclude that the network pools information across luminance polarity channels.
Collapse
Affiliation(s)
- Alexis D J Makin
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Piovesan
- Department of Psychology, Edge Hill University, Ormskirk, United Kingdom
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Giulia Rampone
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yiovanna Derpsch
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marco Bertamini
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|