1
|
Moradi F, Eslami F, Rahimi N, Koohfar A, Shayan M, Maadani M, Ghasemi M, Dehpour AR. Modafinil exerts anticonvulsive effects against lithium-pilocarpine-induced status epilepticus in rats: A role for tumor necrosis factor-α and nitric oxide signaling. Epilepsy Behav 2022; 130:108649. [PMID: 35344809 DOI: 10.1016/j.yebeh.2022.108649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Status epilepticus (SE) is a continuous episode of seizures which leads to hippocampal neurodegeneration, severe systemic inflammation, and extreme damage to the brain. Modafinil, a psychostimulant and wake-promoting agent, has exerted neuroprotective and anti-inflammatory effects in previous preclinical studies. The aim of this study was to assess effects of modafinil on the lithium-pilocarpine-induced SE rat model and to explore possible involvement of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) pathways in this regard. METHODS Status epilepticus was provoked by injection of lithium chloride (127 mg/kg, intraperitoneally [i.p]) and pilocarpine (60 mg/kg, i.p.) in rats. Animals received different modafinil doses (50, 75, 100, and 150 mg/kg, i.p.) and SE scores were documented over 3 hours of duration. Moreover, the role of the nitrergic pathway in the effects of modafinil was evaluated by injection of the non-selective NO synthase (NOS) inhibitor L-NG-Nitro arginine methyl ester (L-NAME, 10 mg/kg, i.p.), the selective neuronal NOS inhibitor 7-nitroindazole (30 mg/kg, i.p.), and the selective inducible NOS inhibitor aminoguanidine (100 mg/kg, i.p.) 15 min before saline/vehicle or modafinil. The ELISA method was used to quantify TNF-α and NO metabolite levels in the isolated hippocampus. RESULTS Modafinil at 100 mg/kg significantly decreased SE scores (P < 0.01). Pre-treatment with L-NAME, 7-nitroindazole, and aminoguanidine significantly reversed the anticonvulsive effects of modafinil. Status epilepticus-induced animals showed significantly higher NO metabolite and TNF-α levels in their hippocampal tissues, an effect that was reversed by modafinil (100 mg/kg, i.p.) treatment. Administration of NOS inhibitors resulted in excessive NO level reduction but an escalation of TNF-α level in modafinil-treated SE-animals. CONCLUSION Our study revealed anticonvulsive effects of modafinil in the lithium-pilocarpine-induced SE rat model via possible involvement of TNF-α and nitrergic pathways.
Collapse
Affiliation(s)
- Farid Moradi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Koohfar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Maadani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|