1
|
Shamim EA, Kim MS, Kang SY, Srivanitchapoom P, Jin SH, Houdayer E, Diomi P, Thirugnanasambandam N, Kukke SN, Matsuhashi M, Lamy JC, Wu T, Meunier S, Hallett M. Long-term motor learning in focal hand dystonia. Clin Neurophysiol 2024; 168:63-71. [PMID: 39490029 DOI: 10.1016/j.clinph.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Because focal hand dystonia usually occurs in the over-learned stage, it would be valuable to know long-term motor learning characteristics and underlying pathophysiological features that might predispose to dystonia. METHODS We conducted a case-control exploratory study of 15 visits over 12 weeks in the non-affected hand of a 4-finger sequence of 8 key presses in eight patients with FHD compared with eight age- and sex-matched, healthy volunteers (HVs). We studied the behavioral data and the physiological changes of the brain, including motor cortical excitability and cortical oscillations. RESULTS There was no significant difference in the time to reach 100 % accuracy between FHD and HV during the 80-day follow-up period. There was a statistically significant difference in the accuracy of sequential finger movement tasks between patients with FHD compared with HVs over 12 weeks, but post-hoc analysis with multiple comparion correction did not show difference. There were no significant differences in recruitment curve changes and task-related power changes of alpha and beta bands. CONCLUSION Over 12 weeks, FHD have motor learning capacity comparable to HVs and do not show pathophysiological abnormalities. SIGNIFICANCE Further studies would be valuable with more patients, more extended periods of practice, and more detailed electrophysiological explorations.
Collapse
Affiliation(s)
- Ejaz A Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Mid-Atlantic Permanente Research Institute, Kaiser Permanente, Rockville, MD 20852, USA.
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do 18450, Republic of Korea
| | - Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do 18450, Republic of Korea.
| | - Prachaya Srivanitchapoom
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seung-Hyun Jin
- MediRita, Inc., 37, Maebongsan-ro, Mapo-gu, Seoul 03909, Republic of Korea.
| | - Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan 30132, Italy
| | - Pierre Diomi
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Valley Patient Care-Urgent Care Center, 10076 Dumfries Rd, #80A, Manassas, VA 20110, United States
| | - Nivethida Thirugnanasambandam
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sahana N Kukke
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; The Office of Strategic Coordination, The Common Fund, Division of Program Coordination, Planning, and Strategic Initiatives, NIH, Rockville, MD 20852, USA.
| | - Masao Matsuhashi
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Jean-Charles Lamy
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Sorbonne Université, Paris Brain Institute, Inserm, CNRS, APHP, Paris 75013, France
| | - Tianxia Wu
- Clinical Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sabine Meunier
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Sorbonne Université, Paris Brain Institute, Inserm, CNRS, APHP, Paris 75013, France
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Sarasso E, Emedoli D, Gardoni A, Zenere L, Canu E, Basaia S, Doretti A, Ticozzi N, Iannaccone S, Amadio S, Del Carro U, Filippi M, Agosta F. Cervical motion alterations and brain functional connectivity in cervical dystonia. Parkinsonism Relat Disord 2024; 120:106015. [PMID: 38325256 DOI: 10.1016/j.parkreldis.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Evaluating the neural correlates of sensorimotor control deficits in cervical dystonia (CD) is fundamental to plan the best treatment. This study aims to assess kinematic and resting-state functional connectivity (RS-FC) characteristics in CD patients relative to healthy controls. METHODS Seventeen CD patients and 14 age-/sex-matched healthy controls were recruited. Electromagnetic sensors were used to evaluate dystonic pattern, mean/maximal cervical movement amplitude and joint position error with eyes open and closed, and movement quality during target reaching with the head. RS-fMRI was acquired to compare the FC of brain sensorimotor regions between patients and controls. In patients, correlations between motion analysis and FC data were assessed. RESULTS CD patients relative to controls showed reduced mean and maximal cervical range of motion (RoM) in rotation both towards and against dystonia pattern and reduced total RoM in rotation both with eyes open and closed. They had less severe dystonia pattern with eyes open vs eyes closed. CD patients showed an altered movement quality and sensorimotor control during target reaching and a higher joint position error. Compared to controls, CD patients showed reduced FC between supplementary motor area (SMA), occipital and cerebellar areas, which correlated with lower cervical RoM in rotation both with eyes open and closed and with worse movement quality during target reaching. CONCLUSIONS FC alterations between SMA and occipital and cerebellar areas may represent the neural basis of cervical sensorimotor control deficits in CD patients. Electromagnetic sensors and RS-fMRI might be promising tools to monitor CD and assess the efficacy of rehabilitative interventions.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Daniele Emedoli
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Zenere
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Doretti
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Amadio
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ubaldo Del Carro
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Rogić Vidaković M, Šoda J, Kuluva JE, Bošković B, Dolić K, Gunjača I. Exploring Neurophysiological Mechanisms and Treatment Efficacies in Laryngeal Dystonia: A Transcranial Magnetic Stimulation Approach. Brain Sci 2023; 13:1591. [PMID: 38002550 PMCID: PMC10669610 DOI: 10.3390/brainsci13111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Laryngeal dystonia (LD), known or termed as spasmodic dysphonia, is a rare movement disorder with an unknown cause affecting the intrinsic laryngeal muscles. Neurophysiological studies point to perturbed inhibitory processes, while conventional genetic studies reveal fragments of genetic architecture in LD. The study's aims are to (1) describe transcranial magnetic stimulation (TMS) methodology for studying the functional integrity of the corticospinal tract by stimulating the primary motor cortex (M1) for laryngeal muscle representation and recording motor evoked potentials (MEPs) from laryngeal muscles; (2) evaluate the results of TMS studies investigating the cortical silent period (cSP) in LD; and (3) present the standard treatments of LD, as well as the results of new theoretical views and treatment approaches like repetitive TMS and laryngeal vibration over the laryngeal muscles as the recent research attempts in treatment of LD. Neurophysiological findings point to a shortened duration of cSP in adductor LD and altered cSP duration in abductor LD individuals. Future TMS studies could further investigate the role of cSP in relation to standard laryngological measures and treatment options. A better understanding of the neurophysiological mechanisms might give new perspectives for the treatment of LD.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Joško Šoda
- Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | | | - Braco Bošković
- Department of Otorhinolaryngology, University Hospital of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Gunjača
- Department of Biology and Human Genetics, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
4
|
Ginatempo F, Manzo N, Loi N, Belvisi D, Cutrona C, Conte A, Berardelli A, Deriu F. Abnormalities in the face primary motor cortex in oromandibular dystonia. Clin Neurophysiol 2023; 151:151-160. [PMID: 37150654 DOI: 10.1016/j.clinph.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVE To comprehensively investigate excitability in face and hand M1 and sensorimotor integration in oromandibular dystonia (OMD) patients. METHODS Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short (SAI) and long (LAI) afferent inhibition were investigated in face and hand M1 using transcranial magnetic stimulation protocols in 10 OMD patients. Data were compared with those obtained in 10 patients with focal hand dystonia (FHD), in 10 patients with blepharospasm (BSP), and 10 matched healthy subjects (HS). RESULTS Results demonstrated that in OMD patients SICI was reduced in face M1 (p < 0.001), but not in hand M1, compared to HS. In FHD, SICI was significantly impaired in hand M1 (p = 0.029), but not in face M1. In BSP, SICI was normal in both face and hand M1 while ICF and LAI were normal in all patient groups and cortical area tested. SAI was significantly reduced (p = 0.003) only in the face M1 of OMD patients. CONCLUSIONS In OMD, SICI and SAI were significantly reduced. These abnormalities are specific to the motor cortical area innervating the muscular district involved in focal dystonia. SIGNIFICANCE In OMD, the integration between sensory inflow and motor output seem to be disrupted at cortical level with topographic specificity.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy.
| |
Collapse
|
5
|
Listik C, Lapa JD, Casagrande SCB, Barbosa ER, Iglesio R, Godinho F, Duarte KP, Teixeira MJ, Cury RG. Exploring clinical outcomes in patients with idiopathic/inherited isolated generalized dystonia and stimulation of the subthalamic region. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:263-270. [PMID: 37059436 PMCID: PMC10104753 DOI: 10.1055/s-0043-1764416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable. OBJECTIVE To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement. METHODS The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects. RESULTS Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00-98.00) and 20.60 ± 7.80 (13.00-32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003). CONCLUSIONS These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.
Collapse
Affiliation(s)
- Clarice Listik
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Jorge Dornellys Lapa
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | | | - Egberto Reis Barbosa
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Ricardo Iglesio
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Fabio Godinho
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Kleber Paiva Duarte
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Manoel Jacobsen Teixeira
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| |
Collapse
|
6
|
Frey J, Ramirez-Zamora A, Wagle Shukla A. Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:119-139. [PMID: 37338699 DOI: 10.1007/978-3-031-26220-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Sperandeo A, Tamburini C, Noakes Z, de la Fuente DC, Keefe F, Petter O, Plumbly W, Clifton N, Li M, Peall K. Cortical neuronal hyperexcitability and synaptic changes in SGCE mutation-positive myoclonus dystonia. Brain 2022; 146:1523-1541. [PMID: 36204995 PMCID: PMC10115238 DOI: 10.1093/brain/awac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myoclonus Dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches; the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines (iPSC) each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in neither early- (PAX6, FOXG1) nor late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterisation using Ca2+ imaging and MEA approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE-mutations. Bulk-RNA-seq analysis identified gene ontological enrichment for neuron projection development, synaptic signalling, and synaptic transmission. Examination of dendritic morphology found SGCE-mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (D80 and D100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE-mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher pre-synaptic neurexin-1 and lower post-synaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in Myoclonus Dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.
Collapse
Affiliation(s)
- Alessandra Sperandeo
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Daniel Cabezas de la Fuente
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - William Plumbly
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Nicholas Clifton
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Meng Li
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Kathryn Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| |
Collapse
|
8
|
The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. J Clin Med 2022; 11:jcm11123453. [PMID: 35743523 PMCID: PMC9224879 DOI: 10.3390/jcm11123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected laryngeal muscle. The aim of this narrative review is to summarize the patho-neuro-physiological and genetic background of LD, as well as the standard recommended therapy (BoNT) and pharmacological treatment options, and to discuss possible treatment perspectives using neuro-modulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and vibrotactile stimulation. The review will present two LD cases, patients with adductor and abductor LD, standard diagnostic procedure, treatments and achievement, and the results of cortical excitability mapping the primary motor cortex for the representation of the laryngeal muscles in the assessment of corticospinal and corticobulbar excitability.
Collapse
|
9
|
Kaňovský P, Rosales R, Otruba P, Nevrlý M, Hvizdošová L, Opavský R, Kaiserová M, Hok P, Menšíková K, Hluštík P, Bareš M. Contemporary clinical neurophysiology applications in dystonia. J Neural Transm (Vienna) 2021; 128:509-519. [PMID: 33591454 DOI: 10.1007/s00702-021-02310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Raymond Rosales
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Department of Neurology and Psychiatry, The Neuroscience Institute, University of Santo Tomás Hospital, Manila, Philippines
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Bareš
- 1st Department of Neurology, Masaryk University Medical School and St. Anne University Hospital, Brno, Czech Republic
| |
Collapse
|