1
|
Benvegnù G, Perotti S, Vegher A, Chiamulera C. Virtual Reality Environmental Enrichment Effects on Craving for Cigarette in Smokers. Games Health J 2024. [PMID: 38985569 DOI: 10.1089/g4h.2023.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Background: Preclinical studies suggested the exposure to environmental enrichment (EE) as an intervention able to prevent or reduce nicotine-taking and nicotine-seeking behaviors. Virtual reality (VR) may help to test the effects of EE in smokers in a reproducible and feasible manner. Materials and Methods: In the present study, 31 smokers (14 women) were divided into two groups: (1) exposure to a virtual EE (VR-EE) and (2) exposure to a virtual neutral environment (VR-NoEE). Cigarette craving was assessed as basal and evoked, at different timepoints during the session. Behavior activity during VR exposure, mood, and subjective measures were also collected. Results: EE exposure in VR significantly reduced craving scores from basal timepoint. This was not observed in the VR-NoEE group, which significantly increased craving compared with values at neutral scenario. When both groups were exposed to smoking-related VR scenario, the VR-EE group showed an increased craving compared with previous timepoint up to score values not different from those in the VR-NoEE group. A significant positive correlation between basal craving scores and interactive behavior with virtual smoking cues was observed in the VR-NoEE but not in the VR-EE group. Conclusion: These findings suggest that virtual EE might have an inhibitory effect in smokers on basal, but not on evoked cigarette craving. Noteworthily, the interactive activity correlation to craving scores in the VR-NoEE participants was not observed in the VR-EE group, adding further evidence that the enrichment simulation was nonetheless able to modify behavior in the smoking-related scenario.
Collapse
Affiliation(s)
- Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Samuele Perotti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessia Vegher
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Environmental Enrichment Components Required to Reduce Methamphetamine-Induced Behavioral Sensitization in Mice: Examination of Behaviors and Neural Substrates. J Clin Med 2022; 11:jcm11113051. [PMID: 35683439 PMCID: PMC9181252 DOI: 10.3390/jcm11113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023] Open
Abstract
Environmental enrichment (EE) involves the presentation of various sensory, physical, social, and cognitive stimuli in order to alter neural activity in specific brain areas, which can ameliorate methamphetamine (MAMPH)-induced behavioral sensitization and comorbid anxiety symptoms. No previous studies have comprehensively examined which EE components are critical for effectively reducing MAMPH-induced behavioral sensitization and anxiety. This study examined different housing conditions, including standard housing (SH, No EE), standard EE (STEE), physical EE (PEE), cognitive EE (CEE), and social EE (SEE). In the beginning, mice were randomly assigned to the different combinations of housing conditions and injections, consisting of No EE/Saline, No EE/MAMPH, STEE/MAMPH, PEE/MAMPH, CEE/MAMPH, and SEE/MAMPH groups. Then, the mice received intraperitoneal injections of 1 mg/kg MAMPH or normal saline daily for 7 days, followed by a final injection of 0.5 mg/kg MAMPH or normal saline. After behavioral tests, all mice were examined for c-Fos immunohistochemical staining. The results showed that MAMPH induced behavioral sensitization as measured by distance traveled. MAMPH appeared to induce lowered anxiety responses and severe hyperactivity. All EE conditions did not affect MAMPH-induced lowered anxiety behaviors. STEE was likely more effective for reducing MAMPH-induced behavioral sensitization than PEE, CEE, and SEE. The c-Fos expression analysis showed that the medial prefrontal cortex (i.e., cingulate cortex 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), caudate-putamen (CPu), and hippocampus (i.e., CA1, CA3, and dentate gyrus (DG)) contributed to MAMPH-induced behavioral sensitization. The Cg1, IL, NAc, BLA, VTA, CPu, CA3, and DG also mediated STEE reductions in MAMPH-induced behavioral sensitization. This study indicates that all components of EE are crucial for ameliorating MAMPH-induced behavioral sensitization, as no individual EE component was able to effectively reduce MAMPH-induced behavioral sensitization. The present findings provide insight into the development of non-pharmacological interventions for reducing MAMPH-induced behavioral sensitization.
Collapse
|
4
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Pintori N, Piva A, Guardiani V, Marzo CM, Decimo I, Chiamulera C. The interaction between Environmental Enrichment and fluoxetine in inhibiting sucrose-seeking renewal in mice depend on social living condition. Psychopharmacology (Berl) 2022; 239:2351-2361. [PMID: 35353203 PMCID: PMC9205808 DOI: 10.1007/s00213-022-06124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Several single or combined therapeutic approaches have been developed to treat addiction, however with partial efficacy in preventing relapse. Recently, the living environment has been suggested as a critical intervening factor determining the treatment outcomes. Despite accumulating evidence confirming a role of living conditions in the vulnerability to addictive behaviours, their impact on single or integrative therapeutic strategies preventing relapse is yet to be identified. OBJECTIVES Here, we explore the possible interaction between brief Environmental Enrichment (EE) exposure and acute fluoxetine administration in inhibiting sucrose-seeking behaviours, and whether this effect could be affected by living environment. METHODS Social and isolated adult male C57BL/6 mice were trained to sucrose self-administration associated to a specific conditioning context (CxA), followed by a 7-day extinction in a different context (CxB). Afterwards, mice were exposed for 22 h to EE and then injected with fluoxetine (10 mg/kg, i.p.) 1 h before a CxA-induced sucrose-seeking test. RESULTS Brief EE exposure and acute fluoxetine administration alone inhibited context-induced sucrose-seeking in both housing conditions; however, they exhibited additive properties only in social condition. CONCLUSIONS Our data show that social environment may influence the EE/fluoxetine interaction in inhibiting relapse to sucrose. These findings suggest that setting up proper living conditions to boost the efficacy of therapeutic approaches may represent a fundamental strategy to treat addiction disorders.
Collapse
Affiliation(s)
- N. Pintori
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy ,Department of Biomedical Sciences, Cittadella Universitaria Di Monserrato, University of Cagliari, S.P.8 km 0, 700-09042 Monserrato, Cagliari Italy
| | - A. Piva
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - V. Guardiani
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - C. M. Marzo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - I. Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - C. Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| |
Collapse
|