1
|
Hsu TY, Wang HY, Chen JT, Wang CA. Investigating the role of human frontal eye field in the pupil light reflex modulation by saccade planning and working memory. Front Hum Neurosci 2022; 16:1044893. [DOI: 10.3389/fnhum.2022.1044893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
The pupil constricts in response to an increase in global luminance level, commonly referred to as the pupil light reflex. Recent research has shown that these reflex responses are modulated by high-level cognition. There is larger pupil constriction evoked by a bright stimulus when the stimulus location spatially overlaps with the locus of attention, and these effects have been extended to saccade planning and working memory (here referred to as pupil local-luminance modulation). Although research in monkeys has further elucidated a central role of the frontal eye field (FEF) and superior colliculus in the pupil local-luminance modulation, their roles remain to be established in humans. Through applying continuous theta-burst transcranial magnetic stimulation over the right FEF (and vertex) to inhibit its activity, we investigated the role of the FEF in human pupil local-luminance responses. Pupil light reflex responses were transiently evoked by a bright patch stimulus presented during the delay period in the visual- and memory-delay tasks. In the visual-delay task, larger pupil constriction was observed when the patch location was spatially aligned with the target location in both stimulation conditions. More interestingly, after FEF stimulation, larger pupil constriction was obtained when the patch was presented in the contralateral, compared to the ipsilateral visual field of the stimulation. In contrast, FEF stimulation effects were absence in the memory-delay task. Linear mixed model results further found that stimulation condition, patch location consistency, and visual field significantly modulated observed pupil constriction responses. Together, our results constitute the first evidence of FEF modulation in human pupil local-luminance responses.
Collapse
|
2
|
Chen JT, Kuo YC, Hsu TY, Wang CA. Fatigue and Arousal Modulations Revealed by Saccade and Pupil Dynamics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159234. [PMID: 35954585 PMCID: PMC9367726 DOI: 10.3390/ijerph19159234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Saccadic eye movements are directed to the objects of interests and enable high-resolution visual images in the exploration of the visual world. There is a trial-to-trial variation in saccade dynamics even in a simple task, possibly attributed to arousal fluctuations. Previous studies have showed that an increase of fatigue level over time, also known as time-on-task, can be revealed by saccade peak velocity. In addition, pupil size, controlled by the autonomic nervous system, has long been used as an arousal index. However, limited research has been done with regards to the relation between pupil size and saccade behavior in the context of trial-to-trial variation. To investigate fatigue and arousal effects on saccadic and pupillary responses, we used bright and emotional stimuli to evoke pupillary responses in tasks requiring reactive and voluntary saccade generation. Decreased voluntary saccade peak velocities, reduced tonic pupil size and phasic pupillary responses were observed as time-on-task increased. Moreover, tonic pupil size affected saccade latency and dynamics, with steeper saccade main sequence slope as tonic pupil size increased. In summary, saccade dynamics and tonic pupil size were sensitive to fatigue and arousal level, together providing valuable information for the understanding of human behavior.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Ying-Chun Kuo
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
| | - Tzu-Yu Hsu
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei 110, Taiwan;
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei 110, Taiwan;
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Wang CA, Nguyen KT, Juan CH. Linking Pupil Size Modulated by Global Luminance and Motor Preparation to Saccade Behavior. Neuroscience 2021; 476:90-101. [PMID: 34571085 DOI: 10.1016/j.neuroscience.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
Saccades are rapid eye movements that are used to move the high acuity fovea in a serial manner in the exploration of the visual scene. Stimulus contrast is known to modulate saccade latency and metrics possibly via changing visual activity in the superior colliculus (SC), a midbrain structure causally involved in saccade generation. However, the quality of visual signals should also be modulated by the amount of lights projected onto the retina, which is gated by the size of the pupil. Although absolute pupil size should modulate visual signals and in turn affect saccade responses, research examining this relationship is very limited. Besides, pupil size is associated with motor preparation. However, the role of pupil dilation in saccade metrics remains unexplored. Through varying peripheral background luminance level and target visual contrast in the saccade task, we investigated the role of absolute pupil size and baseline-corrected pupil dilation in saccade latency and metrics. Higher target detection accuracy was obtained with lower background luminance level, and larger absolute pupil diameter correlated with smaller saccade amplitude and higher saccade peak velocities. More interestingly, the comparable modulation between pupil dilation and stimulus contrast was obtained, showing larger pupil dilation (or higher contrast stimuli) correlating with faster saccade latencies, larger amplitude, higher peak velocities, and smaller endpoint deviation. Together, our results demonstrated the influence of absolute pupil size induced by global luminance level and baseline-corrected pupil dilation associated with motor preparation on saccade latency and metrics, implicating the role of the SC in this behavior.
Collapse
Affiliation(s)
- Chin-An Wang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
| | - Kien Trong Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Faculty of Electronics Engineering, Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan; Department of Psychology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|