1
|
Jin T, You Y, Fan W, Wang J, Chen Y, Li S, Hong S, Wang Y, Cao R, Yodoi J, Tian H. Geranylgeranylacetone Ameliorates Skin Inflammation by Regulating and Inducing Thioredoxin via the Thioredoxin Redox System. Antioxidants (Basel) 2023; 12:1701. [PMID: 37760004 PMCID: PMC10525896 DOI: 10.3390/antiox12091701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Geranylgeranylacetone (GGA) exerts cytoprotective activity against various toxic stressors via the thioredoxin (TRX) redox system; however, its effect on skin inflammation and molecular mechanism on inducing the TRX of GGA is still unknown. We investigated the effects of GGA in a murine irritant contact dermatitis (ICD) model induced by croton oil. Both a topical application and oral administration of GGA induced TRX production and Nrf2 activation. GGA ameliorated ear swelling, neutrophil infiltration, and inhibited the expression of TNF-α, IL-1β, GM-CSF, and 8-OHdG. GGA's cytoprotective effect was stronger orally than topically in mice. In vitro studies also showed that GGA suppressed the expression of NLRP3, TNF-α, IL-1β, and GM-CSF and scavenged ROS in PAM212 cells after phorbol myristate acetate stimulation. Moreover, GGA induced endogenous TRX production and Nrf2 nuclear translocation in PAM212 cells (dependent on the presence of ROS) and activated the PI3K-Akt signaling pathway. GGA significantly downregulated thioredoxin-interacting protein (TXNIP) levels in PAM212 cells treated with or without Nrf2 siRNA. After knocking down Nrf2 in PAM212 cells, the effect of GGA on TRX induction was significantly inhibited. This suggests that GGA suppress ICD by inducing endogenous TRX, which may be regulated by PI3K/Akt/Nrf2 mediation of the TRX redox system.
Collapse
Affiliation(s)
- Tiancheng Jin
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yitong You
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Wenjie Fan
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junyang Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yuhao Chen
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Siyuan Hong
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yaxuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Ruijie Cao
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
- Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing 312000, China
| |
Collapse
|
2
|
Igarashi Y. Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00625-y. [PMID: 37188757 DOI: 10.1038/s41429-023-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
After the successful discoveries of numerous antibiotics from microorganisms, frequent reisolation of known compounds becomes an obstacle in further development of new drugs from natural products. Exploration of biological sources that can provide novel scaffolds is thus an urgent matter in drug lead screening. As an alternative source to the conventionally used soil microorganisms, we selected endophytic actinomycetes, marine actinomycetes, and actinomycetes in tropical areas for investigation and found an array of new bioactive compounds. Furthermore, based on the analysis of the distribution pattern of biosynthetic gene clusters in bacteria together with available genomic data, we speculated that biosynthetic gene clusters for secondary metabolites are specific to each genus. Based on this assumption, we investigated actinomycetal and marine bacterial genera from which no compounds have been reported, which led to the discovery of a variety of skeletally novel bioactive compounds. These findings suggest that consideration of environmental factor and taxonomic position is critically effective in the selection of potential strains producing structurally unique compounds.
Collapse
Affiliation(s)
- Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
3
|
Jia J, Xu G, Zhu D, Liu H, Zeng X, Li L. Advances in the Functions of Thioredoxin System in Central Nervous System Diseases. Antioxid Redox Signal 2023; 38:425-441. [PMID: 35761787 DOI: 10.1089/ars.2022.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: The thioredoxin system comprises thioredoxin (Trx), thioredoxin reductase (TrxR), and nicotinamide adenine dinucleotide phosphate, besides an endogenous Trx inhibitor, the thioredoxin-interacting protein (TXNIP). The Trx system plays critical roles in maintaining the redox homeostasis in the central nervous system (CNS), in which oxidative stress damage is prone to occurrence due to its high-energy demand. Recent Advances: Increasing studies have demonstrated that the expression or activity of Trx/TrxR is usually decreased and that TXNIP expression is increased in patients with CNS diseases, including neurodegenerative diseases, cerebral ischemia, traumatic brain injury, and depression, as well as in their cellular and animal models. The compromise of Trx/TrxR enhances the susceptibility of neurons to related pathological state. Increased TXNIP not only enhances the inhibition of Trx activity, but also activates the NOD-like receptor protein 3 inflammasome, resulting in neuroinflammation in the brain. Critical Issues: In this review, we highlight the sources of oxidative stress in the CNS. The expression and function of the Trx system are summarized in different CNS diseases. This review also mentions that some inducers of Trx show neuroprotection in CNS diseases. Future Directions: Accumulating evidence has demonstrated the important roles of the Trx system in CNS diseases, suggesting that the Trx system may be a promising therapeutic target for CNS diseases. Further study should aim to develop the most effective inducers of Trx and specific inhibitors of TXNIP and to apply them in the clinical trials for the treatment of CNS diseases. Antioxid. Redox Signal. 38, 425-441.
Collapse
Affiliation(s)
- Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Department of Forensic and Pathology, Jiaxing University Medical College, Jiaxing, China
| | - Dongsheng Zhu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongjun Liu
- Department of Neurology, Affiliated Xin'an International Hospital, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
4
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|