1
|
Turrini S, Fiori F, Bevacqua N, Saracini C, Lucero B, Candidi M, Avenanti A. Spike-timing-dependent plasticity induction reveals dissociable supplementary- and premotor-motor pathways to automatic imitation. Proc Natl Acad Sci U S A 2024; 121:e2404925121. [PMID: 38917006 PMCID: PMC11228524 DOI: 10.1073/pnas.2404925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
Humans tend to spontaneously imitate others' behavior, even when detrimental to the task at hand. The action observation network (AON) is consistently recruited during imitative tasks. However, whether automatic imitation is mediated by cortico-cortical projections from AON regions to the primary motor cortex (M1) remains speculative. Similarly, the potentially dissociable role of AON-to-M1 pathways involving the ventral premotor cortex (PMv) or supplementary motor area (SMA) in automatic imitation is unclear. Here, we used cortico-cortical paired associative stimulation (ccPAS) to enhance or hinder effective connectivity in PMv-to-M1 and SMA-to-M1 pathways via Hebbian spike-timing-dependent plasticity (STDP) to test their functional relevance to automatic and voluntary motor imitation. ccPAS affected behavior under competition between task rules and prepotent visuomotor associations underpinning automatic imitation. Critically, we found dissociable effects of manipulating the strength of the two pathways. While strengthening PMv-to-M1 projections enhanced automatic imitation, weakening them hindered it. On the other hand, strengthening SMA-to-M1 projections reduced automatic imitation but also reduced interference from task-irrelevant cues during voluntary imitation. Our study demonstrates that driving Hebbian STDP in AON-to-M1 projections induces opposite effects on automatic imitation that depend on the targeted pathway. Our results provide direct causal evidence of the functional role of PMv-to-M1 projections for automatic imitation, seemingly involved in spontaneously mirroring observed actions and facilitating the tendency to imitate them. Moreover, our findings support the notion that SMA exerts an opposite gating function, controlling M1 to prevent overt motor behavior when inadequate to the context.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
| | - Francesca Fiori
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, 00128Roma, Italy
| | - Naomi Bevacqua
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Chiara Saracini
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| |
Collapse
|
2
|
Rurak BK, Tan J, Rodrigues JP, Power BD, Drummond PD, Vallence AM. Cortico-cortical connectivity is influenced by levodopa in tremor-dominant Parkinson's disease. Neurobiol Dis 2024; 196:106518. [PMID: 38679112 DOI: 10.1016/j.nbd.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Resting tremor is the most common presenting motor symptom in Parkinson's disease (PD). The supplementary motor area (SMA) is a main target of the basal-ganglia-thalamo-cortical circuit and has direct, facilitatory connections with the primary motor cortex (M1), which is important for the execution of voluntary movement. Dopamine potentially modulates SMA and M1 activity, and both regions have been implicated in resting tremor. This study investigated SMA-M1 connectivity in individuals with PD ON and OFF dopamine medication, and whether SMA-M1 connectivity is implicated in resting tremor. Dual-site transcranial magnetic stimulation was used to measure SMA-M1 connectivity in PD participants ON and OFF levodopa. Resting tremor was measured using electromyography and accelerometry. Stimulating SMA inhibited M1 excitability OFF levodopa, and facilitated M1 excitability ON levodopa. ON medication, SMA-M1 facilitation was significantly associated with smaller tremor than SMA-M1 inhibition. The current findings contribute to our understanding of the neural networks involved in PD which are altered by levodopa medication and provide a neurophysiological basis for the development of interventions to treat resting tremor.
Collapse
Affiliation(s)
- B K Rurak
- Discipline of Psychology, College of Science, Health, Engineering and Education, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia
| | - J Tan
- Discipline of Psychology, College of Science, Health, Engineering and Education, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia
| | - J P Rodrigues
- Hollywood Private Hospital, Western Australia, Australia
| | - B D Power
- Hollywood Private Hospital, Western Australia, Australia; School of Medicine Fremantle, University of Notre Dame, Western Australia, Australia
| | - P D Drummond
- Discipline of Psychology, College of Science, Health, Engineering and Education, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia
| | - A M Vallence
- Discipline of Psychology, College of Science, Health, Engineering and Education, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Western Australia, Australia.
| |
Collapse
|
3
|
Denyer R, Greeley B, Greenhouse I, Boyd LA. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements. Eur J Neurosci 2024; 59:415-433. [PMID: 38145976 DOI: 10.1111/ejn.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Previous research applying transcranial magnetic stimulation during unimanual reaction time tasks indicates a transient change in the inhibitory influence of the dorsal premotor cortex over the contralateral primary motor cortex shortly after the presentation of an imperative stimulus. The degree of interhemispheric inhibition from the dorsal premotor cortex to the contralateral primary motor cortex shifts depending on whether the targeted effector representation in the primary motor cortex is selected for movement. Further, the timing of changes in inhibition covaries with the selection demands of the reaction time task. Less is known about modulation of dorsal premotor to primary motor cortex interhemispheric inhibition during the preparation of bimanual movements. In this study, we used a dual coil transcranial magnetic stimulation to measure dorsal premotor to primary motor cortex interhemispheric inhibition between both hemispheres during unimanual and bimanual simple reaction time trials. Interhemispheric inhibition was measured early and late in the 'pre-movement period' (defined as the period immediately after the onset of the imperative stimulus and before the beginning of voluntary muscle activity). We discovered that interhemispheric inhibition was more facilitatory early in the pre-movement period compared with late in the pre-movement period during unimanual reaction time trials. In contrast, interhemispheric inhibition was unchanged throughout the pre-movement period during symmetrical bimanual reaction time trials. These results suggest that there is greater interaction between the dorsal premotor cortex and contralateral primary motor cortex during the preparation of unimanual actions compared to bimanual actions.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Bevacqua N, Turrini S, Fiori F, Saracini C, Lucero B, Candidi M, Avenanti A. Cortico-cortical paired associative stimulation highlights asymmetrical communication between rostral premotor cortices and primary motor cortex. Brain Stimul 2024; 17:89-91. [PMID: 38191092 DOI: 10.1016/j.brs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Affiliation(s)
- Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Rome, Italy
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neurophysiology and Neuroengineering of Human-Technology Interaction Unit (NeXT Lab), Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Chiara Saracini
- Centro de Investigación en Neuropsicología y Neurosciencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 3460000, Talca, Chile
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurosciencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 3460000, Talca, Chile
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurosciencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 3460000, Talca, Chile.
| |
Collapse
|
5
|
Gyulai A, Körmendi J, Issa MF, Juhasz Z, Nagy Z. Event-Related Spectral Perturbation, Inter Trial Coherence, and Functional Connectivity in motor execution: A comparative EEG study of old and young subjects. Brain Behav 2023; 13:e3176. [PMID: 37624638 PMCID: PMC10454281 DOI: 10.1002/brb3.3176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION The motor-related bioelectric brain activity of healthy young and old subjects was studied to understand the effect of aging on motor execution. A visually cued finger tapping movement paradigm and high-density EEG were used to examine the time and frequency characteristics. METHODS Twenty-two young and 22 healthy elderly adults participated in the study. Repeated trials of left and right index finger movements were recorded with a 128-channel EEG. Event-Related Spectral Perturbation (ERSP), Inter Trial Coherence (ITC), and Functional Connectivity were computed and compared between the age groups. RESULTS An age-dependent theta and alpha band ERSP decrease was observed over the frontal-midline area. Decrease of beta band ERSP was found over the ipsilateral central-parietal regions. Significant ITC differences were found in the delta and theta bands between old and young subjects over the contralateral parietal-occipital areas. The spatial extent of increased ITC values was larger in old subjects. The movement execution of older subjects showed higher global efficiency in the delta and theta bands, and higher local efficiency and node strengths in the delta, theta, alpha, and beta bands. CONCLUSION As functional compensation of aging, elderly motor networks involve more nonmotor, parietal-occipital, and frontal areas, with higher global and local efficiency, node strength. ERSP and ITC changes seem to be sensitive and complementary biomarkers of age-related motor execution.
Collapse
Affiliation(s)
- Adam Gyulai
- Szentagothai Doctoral SchoolSemmelweis UniversityBudapestHungary
- Department of NeurologyUzsoki HospitalBudapestHungary
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
| | - Janos Körmendi
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Education and Psychology, Institute of Health Promotion and Sport SciencesEötvös Loránd UniversityBudapestHungary
| | - Mohamed F. Issa
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Computers and Artificial Intelligence, Department of Scientific ComputingBenha UniversityBenhaEgypt
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
| | - Zoltan Nagy
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Department of Vascular NeurologySemmelweis UniversityBudapestHungary
| |
Collapse
|
6
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Battaglia S, Romei V, Avenanti A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023; 11:biomedicines11051464. [PMID: 37239135 DOI: 10.3390/biomedicines11051464] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is commonly associated with a decline in motor control and neural plasticity. Tuning cortico-cortical interactions between premotor and motor areas is essential for controlling fine manual movements. However, whether plasticity in premotor-motor circuits predicts hand motor abilities in young and elderly humans remains unclear. Here, we administered transcranial magnetic stimulation (TMS) over the ventral premotor cortex (PMv) and primary motor cortex (M1) using the cortico-cortical paired-associative stimulation (ccPAS) protocol to manipulate the strength of PMv-to-M1 connectivity in 14 young and 14 elderly healthy adults. We assessed changes in motor-evoked potentials (MEPs) during ccPAS as an index of PMv-M1 network plasticity. We tested whether the magnitude of MEP changes might predict interindividual differences in performance in two motor tasks that rely on premotor-motor circuits, i.e., the nine-hole pegboard test and a choice reaction task. Results show lower motor performance and decreased PMv-M1 network plasticity in elderly adults. Critically, the slope of MEP changes during ccPAS accurately predicted performance at the two tasks across age groups, with larger slopes (i.e., MEP increase) predicting better motor performance at baseline in both young and elderly participants. These findings suggest that physiological indices of PMv-M1 plasticity could provide a neurophysiological marker of fine motor control across age-groups.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Institut für Klinische und Gesundheitspsychologie, Universität Wien, 1010 Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, 00128 Rome, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 346000, Chile
| |
Collapse
|
7
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Candidi M, Avenanti A. Transcranial cortico-cortical paired associative stimulation (ccPAS) over ventral premotor-motor pathways enhances action performance and corticomotor excitability in young adults more than in elderly adults. Front Aging Neurosci 2023; 15:1119508. [PMID: 36875707 PMCID: PMC9978108 DOI: 10.3389/fnagi.2023.1119508] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) methods such as cortico-cortical paired associative stimulation (ccPAS) can increase the strength of functional connectivity between ventral premotor cortex (PMv) and primary motor cortex (M1) via spike timing-dependent plasticity (STDP), leading to enhanced motor functions in young adults. However, whether this STDP-inducing protocol is effective in the aging brain remains unclear. In two groups of young and elderly healthy adults, we evaluated manual dexterity with the 9-hole peg task before and after ccPAS of the left PMv-M1 circuit. We observed that ccPAS enhanced dexterity in young adults, and this effect was anticipated by a progressive increase in motor-evoked potentials (MEPs) during ccPAS administration. No similar effects were observed in elderly individuals or in a control task. Across age groups, we observed that the magnitude of MEP changes predicted larger behavioral improvements. These findings demonstrate that left PMv-to-M1 ccPAS induces functionally specific improvements in young adults' manual dexterity and an increase in corticomotor excitability, but altered plasticity prevents the effectiveness of ccPAS in the elderly.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Dipartimento di Medicina, NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Rome, Italy
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
8
|
Hehl M, Swinnen SP, Van Malderen S, Cuypers K. No evidence for a difference in lateralization and distinctiveness level of transcranial magnetic stimulation-derived cortical motor representations over the adult lifespan. Front Aging Neurosci 2022; 14:971858. [PMID: 36313026 PMCID: PMC9608504 DOI: 10.3389/fnagi.2022.971858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the presence and patterns of age-related differences in TMS-based measures of lateralization and distinctiveness of the cortical motor representations of two different hand muscles. In a sample of seventy-three right-handed healthy participants over the adult lifespan, the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) cortical motor representations of both hemispheres were acquired using transcranial magnetic stimulation (TMS). In addition, dexterity and maximum force levels were measured. Lateralization quotients were calculated for homolog behavioral and TMS measures, whereas the distinctiveness between the FDI and ADM representation within one hemisphere was quantified by the center of gravity (CoG) distance and cosine similarity. The presence and patterns of age-related changes were examined using linear, polynomial, and piecewise linear regression. No age-related differences could be identified for the lateralization quotient of behavior or cortical motor representations of both intrinsic hand muscles. Furthermore, no evidence for a change in the distinctiveness of the FDI and ADM representation with advancing age was found. In conclusion this work showed that lateralization and distinctiveness of cortical motor representations, as determined by means of TMS-based measures, remain stable over the adult lifespan.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- *Correspondence: Koen Cuypers,
| |
Collapse
|
9
|
Cao N, Pi Y, Qiu F, Wang Y, Xia X, Liu Y, Zhang J. Plasticity changes in dorsolateral prefrontal cortex associated with procedural sequence learning are hemisphere-specific. Neuroimage 2022; 259:119406. [PMID: 35752417 DOI: 10.1016/j.neuroimage.2022.119406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Corticocortical neuroplastic changes from higher-order cortices to primary motor cortex (M1) have been described for procedural sequence learning. The dorsolateral prefrontal cortex (DLPFC) plays critical roles in cognition, including in motor learning and memory. However, neuroplastic changes in the DLPFC and their influence on M1 and on motor learning are not well understood. The present study examined bilateral DLPFC-M1 changes in plasticity induced by procedural motor sequence learning in a serial reaction time task. DLPFC plasticity induced by procedural sequence learning was examined by comparing before vs. after training assessments of ipsilateral/contralateral DLPFC-M1 interactions between sequence order and random order trials performed using either the left or right hand. Intra-hemispheric (inter-stimulus interval [ISI] = 10 ms) and inter-hemispheric (ISI = 10 or 50 ms) DLPFC-M1 interactions and single-pulse motor-evoked potentials (MEPs) were measured with transcranial magnetic stimulation (TMS). The reaction times of participants measured during motor training were faster for sequence learning than for random learning with either hand. Paired-pulse TMS induced DLPFC-M1 interactions that were disinhibited after motor sequence learning, especially for left DLPFC-left M1 interactions with right hand task performance and for left DLPFC-right M1 interactions with left hand task performance. These findings indicate that motor sequence learning induces neuroplastic changes to enhance DLPFC-M1 interactions. This manifestation of plasticity showed hemispheric specificity, favoring the left DLPFC. DLPFC plasticity may be a useful index of DLPFC function and may be a treatment target for enhancing DLPFC function and motor learning.
Collapse
Affiliation(s)
- Na Cao
- School of Psychology, Shanghai University of Sport, Shanghai, China; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yanling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yanqiu Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
10
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|