1
|
Huang YN, Liang WK, Juan CH. Spatial prediction modulates the rhythm of attentional sampling. Cereb Cortex 2024; 34:bhae392. [PMID: 39329361 DOI: 10.1093/cercor/bhae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies demonstrate that behavioral performance during visual spatial attention fluctuates at theta (4 to 8 Hz) and alpha (8 to 16 Hz) frequencies, linked to phase-amplitude coupling of neural oscillations within the visual and attentional system depending on task demands. To investigate the influence of prior spatial prediction, we employed an adaptive discrimination task with variable cue-target onset asynchronies (300 to 1,300 ms) and different cue validity (100% & 50%). We recorded electroencephalography concurrently and adopted adaptive electroencephalography data analytical methods, namely, Holo-Holo-Hilbert spectral analysis and Holo-Hilbert cross-frequency phase clustering. Our findings indicate that response precision for near-threshold Landolt rings fluctuates at the theta band (4 Hz) under certain predictions and at alpha & beta bands (15 & 19 Hz) with uncertain predictions. Furthermore, spatial prediction strengthens theta-alpha modulations at parietal-occipital areas, frontal theta/parietal-occipital alpha phase-amplitude coupling, and within frontal theta-alpha phase-amplitude coupling. Notably, during the pretarget period, beta-modulated gamma oscillations in parietal-occipital areas predict response precision under uncertain prediction, while frontal theta/parietal-occipital alpha phase-amplitude coupling predicts response precision in spatially certain conditions. In conclusion, our study highlights the critical role of spatial prediction in attentional sampling rhythms with both behavioral and electroencephalography evidence.
Collapse
Affiliation(s)
- Yih-Ning Huang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| |
Collapse
|
2
|
Peylo C, Romberg-Taylor C, Behnke L, Sauseng P. Dynamic alpha power modulations and slow negative potentials track natural shifts of spatio-temporal attention. Psychophysiology 2024; 61:e14498. [PMID: 38071405 DOI: 10.1111/psyp.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 04/17/2024]
Abstract
Alpha power modulations and slow negative potentials have previously been associated with anticipatory processes in spatial and temporal top-down attention. In typical experimental designs, however, neural responses triggered by transient stimulus onsets can interfere with attention-driven activity patterns and our interpretation of such. Here, we investigated these signatures of spatio-temporal attention in a dynamic paradigm free from potentially confounding stimulus-driven activity using electroencephalography. Participants attended the cued side of a bilateral stimulus rotation and mentally counted how often one of two remembered sample orientations (i.e., the target) was displayed while ignoring the uncued side and non-target orientation. Afterwards, participants performed a delayed match-to-sample task, in which they indicated if the orientation of a probe stimulus matched the corresponding sample orientation (previously target or non-target). We observed dynamic alpha power reductions and slow negative waves around task-relevant points in space and time (i.e., onset of the target orientation in the cued hemifield) over posterior electrodes contralateral to the locus of attention. In contrast to static alpha power lateralization, these dynamic signatures correlated with subsequent memory performance (primarily detriments for matching probes of the non-target orientation), suggesting a preferential allocation of attention to task-relevant locations and time points at the expense of reduced resources and impaired performance for information outside the current focus of attention. Our findings suggest that humans can naturally and dynamically focus their attention at relevant points in space and time and that such spatio-temporal attention shifts can be reflected by dynamic alpha power modulations and slow negative potentials.
Collapse
Affiliation(s)
- Charline Peylo
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Larissa Behnke
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Universität Zürich, Zurich, Switzerland
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Otero M, Prieur-Coloma Y, El-Deredy W, Weinstein A. A High-Resolution LED Stimulator for Steady-State Visual Stimulation: Customizable, Affordable, and Open Source. SENSORS (BASEL, SWITZERLAND) 2024; 24:678. [PMID: 38276370 PMCID: PMC10819381 DOI: 10.3390/s24020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Visually evoked steady-state potentials (SSVEPs) are neural responses elicited by visual stimuli oscillating at specific frequencies. In this study, we introduce a novel LED stimulator system explicitly designed for steady-state visual stimulation, offering precise control over visual stimulus parameters, including frequency resolution, luminance, and the ability to control the phase at the end of the stimulation. The LED stimulator provides a personalized, modular, and affordable option for experimental setups. Based on the Teensy 3.2 board, the stimulator utilizes direct digital synthesis and pulse width modulation techniques to control the LEDs. We validated its performance through four experiments: the first two measured LED light intensities directly, while the last two assessed the stimulator's impact on EEG recordings. The results demonstrate that the stimulator can deliver a stimulus suitable for generating SSVEPs with the desired frequency and phase resolution. As an open source resource, we provide comprehensive documentation, including all necessary codes and electrical diagrams, which facilitates the system's replication and adaptation for specific experimental requirements, enhancing its potential for widespread use in the field of neuroscience setups.
Collapse
Affiliation(s)
- Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago de Chile 8420000, Chile;
- Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago de Chile 8580000, Chile
| | - Yunier Prieur-Coloma
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Alejandro Weinstein
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
4
|
Liu X, Melcher D. The effect of familiarity on behavioral oscillations in face perception. Sci Rep 2023; 13:10145. [PMID: 37349366 PMCID: PMC10287701 DOI: 10.1038/s41598-023-34812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023] Open
Abstract
Studies on behavioral oscillations demonstrate that visual sensitivity fluctuates over time and visual processing varies periodically, mirroring neural oscillations at the same frequencies. Do these behavioral oscillations reflect fixed and relatively automatic sensory sampling, or top-down processes such as attention or predictive coding? To disentangle these theories, the current study used a dual-target rapid serial visual presentation paradigm, where participants indicated the gender of a face target embedded in streams of distractors presented at 30 Hz. On critical trials, two identical targets were presented with varied stimulus onset asynchrony from 200 to 833 ms. The target was either familiar or unfamiliar faces, divided into different blocks. We found a 4.6 Hz phase-coherent fluctuation in gender discrimination performance across both trial types, consistent with previous reports. In addition, however, we found an effect at the alpha frequency, with behavioral oscillations in the familiar blocks characterized by a faster high-alpha peak than for the unfamiliar face blocks. These results are consistent with the combination of both a relatively stable modulation in the theta band and faster modulation of the alpha oscillations. Therefore, the overall pattern of perceptual sampling in visual perception may depend, at least in part, on task demands. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 16/08/2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.17605/OSF.IO/A98UF .
Collapse
Affiliation(s)
- Xiaoyi Liu
- New York University Abu Dhabi, Abu Dhabi, UAE
| | | |
Collapse
|
5
|
Mentzelopoulos G, Driscoll N, Shankar S, Kim B, Rich R, Fernandez-Nunez G, Stoll H, Erickson B, Medaglia JD, Vitale F. Alerting attention is sufficient to induce a phase-dependent behavior that can be predicted by frontal EEG. Front Behav Neurosci 2023; 17:1176865. [PMID: 37292166 PMCID: PMC10246752 DOI: 10.3389/fnbeh.2023.1176865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Recent studies suggest that attention is rhythmic. Whether that rhythmicity can be explained by the phase of ongoing neural oscillations, however, is still debated. We contemplate that a step toward untangling the relationship between attention and phase stems from employing simple behavioral tasks that isolate attention from other cognitive functions (perception/decision-making) and by localized monitoring of neural activity with high spatiotemporal resolution over the brain regions associated with the attentional network. In this study, we investigated whether the phase of electroencephalography (EEG) oscillations predicts alerting attention. We isolated the alerting mechanism of attention using the Psychomotor Vigilance Task, which does not involve a perceptual component, and collected high resolution EEG using novel high-density dry EEG arrays at the frontal region of the scalp. We identified that alerting attention alone is sufficient to induce a phase-dependent modulation of behavior at EEG frequencies of 3, 6, and 8 Hz throughout the frontal region, and we quantified the phase that predicts the high and low attention states in our cohort. Our findings disambiguate the relationship between EEG phase and alerting attention.
Collapse
Affiliation(s)
- Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Sneha Shankar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | - Ryan Rich
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | | | - Harrison Stoll
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | - John Dominic Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Drexel University, Philadelphia, PA, United States
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Köhler MHA, Weisz N. Cochlear Theta Activity Oscillates in Phase Opposition during Interaural Attention. J Cogn Neurosci 2023; 35:588-602. [PMID: 36626349 DOI: 10.1162/jocn_a_01959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is widely established that sensory perception is a rhythmic process as opposed to a continuous one. In the context of auditory perception, this effect is only established on a cortical and behavioral level. Yet, the unique architecture of the auditory sensory system allows its primary sensory cortex to modulate the processes of its sensory receptors at the cochlear level. Previously, we could demonstrate the existence of a genuine cochlear theta (∼6-Hz) rhythm that is modulated in amplitude by intermodal selective attention. As the study's paradigm was not suited to assess attentional effects on the oscillatory phase of cochlear activity, the question of whether attention can also affect the temporal organization of the cochlea's ongoing activity remained open. The present study utilizes an interaural attention paradigm to investigate ongoing otoacoustic activity during a stimulus-free cue-target interval and an omission period of the auditory target in humans. We were able to replicate the existence of the cochlear theta rhythm. Importantly, we found significant phase opposition between the two ears and attention conditions of anticipatory as well as cochlear oscillatory activity during target presentation. Yet, the amplitude was unaffected by interaural attention. These results are the first to demonstrate that intermodal and interaural attention deploy different aspects of excitation and inhibition at the first level of auditory processing. Whereas intermodal attention modulates the level of cochlear activity, interaural attention modulates the timing.
Collapse
Affiliation(s)
| | - Nathan Weisz
- University of Salzburg.,Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Gan S, Li W. Aberrant neural correlates of multisensory processing of audiovisual social cues related to social anxiety: An electrophysiological study. Front Psychiatry 2023; 14:1020812. [PMID: 36761870 PMCID: PMC9902659 DOI: 10.3389/fpsyt.2023.1020812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by abnormal fear to social cues. Although unisensory processing to social stimuli associated with social anxiety (SA) has been well described, how multisensory processing relates to SA is still open to clarification. Using electroencephalography (EEG) measurement, we investigated the neural correlates of multisensory processing and related temporal dynamics in social anxiety disorder (SAD). METHODS Twenty-five SAD participants and 23 healthy control (HC) participants were presented with angry and neutral faces, voices and their combinations with congruent emotions and they completed an emotional categorization task. RESULTS We found that face-voice combinations facilitated auditory processing in multiple stages indicated by the acceleration of auditory N1 latency, attenuation of auditory N1 and P250 amplitudes, and decrease of theta power. In addition, bimodal inputs elicited cross-modal integrative activity which is indicated by the enhancement of visual P1, N170, and P3/LPP amplitudes and superadditive response of P1 and P3/LPP. More importantly, excessively greater integrative activity (at P3/LPP amplitude) was found in SAD participants, and this abnormal integrative activity in both early and late temporal stages was related to the larger interpretation bias of miscategorizing neutral face-voice combinations as angry. CONCLUSION The study revealed that neural correlates of multisensory processing was aberrant in SAD and it was related to the interpretation bias to multimodal social cues in multiple processing stages. Our findings suggest that deficit in multisensory processing might be an important factor in the psychopathology of SA.
Collapse
Affiliation(s)
- Shuzhen Gan
- Shanghai Changning Mental Health Center, Shanghai, China.,Shanghai Mental Health Center, Shanghai, China
| | - Weijun Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning, China
| |
Collapse
|
8
|
|
9
|
Tosato T, Rohenkohl G, Dowdall JR, Fries P. Quantifying rhythmicity in perceptual reports. Neuroimage 2022; 262:119561. [PMID: 35973565 DOI: 10.1016/j.neuroimage.2022.119561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the discrete Fourier transform (DFT) and the least square spectrum (LSS). DFT and LSS can be applied both on the average accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effects) or on the population (random-effects) of simulated participants. Multiple comparisons across frequencies were corrected using False Discovery Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated sensitivity, specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the average accuracy time course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effects approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.
Collapse
Affiliation(s)
- Tommaso Tosato
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| | - Gustavo Rohenkohl
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Keitel C, Ruzzoli M, Dugué L, Busch NA, Benwell CSY. Rhythms in cognition: The evidence revisited. Eur J Neurosci 2022; 55:2991-3009. [PMID: 35696729 PMCID: PMC9544967 DOI: 10.1111/ejn.15740] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Affiliation(s)
| | - Manuela Ruzzoli
- Basque Center on Cognition, Brain and Language (BCBL), Donostia/San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Niko A Busch
- Institute for Psychology, University of Münster, Münster, Germany
| | | |
Collapse
|
11
|
Merholz G, Grabot L, VanRullen R, Dugué L. Periodic attention operates faster during more complex visual search. Sci Rep 2022; 12:6688. [PMID: 35461325 PMCID: PMC9035177 DOI: 10.1038/s41598-022-10647-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Attention has been found to sample visual information periodically, in a wide range of frequencies below 20 Hz. This periodicity may be supported by brain oscillations at corresponding frequencies. We propose that part of the discrepancy in periodic frequencies observed in the literature is due to differences in attentional demands, resulting from heterogeneity in tasks performed. To test this hypothesis, we used visual search and manipulated task complexity, i.e., target discriminability (high, medium, low) and number of distractors (set size), while electro-encephalography was simultaneously recorded. We replicated previous results showing that the phase of pre-stimulus low-frequency oscillations predicts search performance. Crucially, such effects were observed at increasing frequencies within the theta-alpha range (6-18 Hz) for decreasing target discriminability. In medium and low discriminability conditions, correct responses were further associated with higher post-stimulus phase-locking than incorrect ones, in increasing frequency and latency. Finally, the larger the set size, the later the post-stimulus effect peaked. Together, these results suggest that increased complexity (lower discriminability or larger set size) requires more attentional cycles to perform the task, partially explaining discrepancies between reports of attentional sampling. Low-frequency oscillations structure the temporal dynamics of neural activity and aid top-down, attentional control for efficient visual processing.
Collapse
Affiliation(s)
- Garance Merholz
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France.
| | - Laetitia Grabot
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
| | - Rufin VanRullen
- Centre National de la Recherche Scientifique, CerCo Unité Mixte de Recherche 5549, Université de Toulouse, 31052, Toulouse, France
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|